|
- *> \brief \b SSBGV
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSBGV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbgv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbgv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbgv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
- * LDZ, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
- * ..
- * .. Array Arguments ..
- * REAL AB( LDAB, * ), BB( LDBB, * ), W( * ),
- * $ WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSBGV computes all the eigenvalues, and optionally, the eigenvectors
- *> of a real generalized symmetric-definite banded eigenproblem, of
- *> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
- *> and banded, and B is also positive definite.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangles of A and B are stored;
- *> = 'L': Lower triangles of A and B are stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KA
- *> \verbatim
- *> KA is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
- *> \endverbatim
- *>
- *> \param[in] KB
- *> \verbatim
- *> KB is INTEGER
- *> The number of superdiagonals of the matrix B if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the symmetric band
- *> matrix A, stored in the first ka+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
- *>
- *> On exit, the contents of AB are destroyed.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KA+1.
- *> \endverbatim
- *>
- *> \param[in,out] BB
- *> \verbatim
- *> BB is REAL array, dimension (LDBB, N)
- *> On entry, the upper or lower triangle of the symmetric band
- *> matrix B, stored in the first kb+1 rows of the array. The
- *> j-th column of B is stored in the j-th column of the array BB
- *> as follows:
- *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
- *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
- *>
- *> On exit, the factor S from the split Cholesky factorization
- *> B = S**T*S, as returned by SPBSTF.
- *> \endverbatim
- *>
- *> \param[in] LDBB
- *> \verbatim
- *> LDBB is INTEGER
- *> The leading dimension of the array BB. LDBB >= KB+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
- *> eigenvectors, with the i-th column of Z holding the
- *> eigenvector associated with W(i). The eigenvectors are
- *> normalized so that Z**T*B*Z = I.
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is:
- *> <= N: the algorithm failed to converge:
- *> i off-diagonal elements of an intermediate
- *> tridiagonal form did not converge to zero;
- *> > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF
- *> returned INFO = i: B is not positive definite.
- *> The factorization of B could not be completed and
- *> no eigenvalues or eigenvectors were computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHEReigen
- *
- * =====================================================================
- SUBROUTINE SSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
- $ LDZ, WORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
- * ..
- * .. Array Arguments ..
- REAL AB( LDAB, * ), BB( LDBB, * ), W( * ),
- $ WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL UPPER, WANTZ
- CHARACTER VECT
- INTEGER IINFO, INDE, INDWRK
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SPBSTF, SSBGST, SSBTRD, SSTEQR, SSTERF, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- UPPER = LSAME( UPLO, 'U' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KA.LT.0 ) THEN
- INFO = -4
- ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
- INFO = -5
- ELSE IF( LDAB.LT.KA+1 ) THEN
- INFO = -7
- ELSE IF( LDBB.LT.KB+1 ) THEN
- INFO = -9
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -12
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SSBGV ', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Form a split Cholesky factorization of B.
- *
- CALL SPBSTF( UPLO, N, KB, BB, LDBB, INFO )
- IF( INFO.NE.0 ) THEN
- INFO = N + INFO
- RETURN
- END IF
- *
- * Transform problem to standard eigenvalue problem.
- *
- INDE = 1
- INDWRK = INDE + N
- CALL SSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- *
- * Reduce to tridiagonal form.
- *
- IF( WANTZ ) THEN
- VECT = 'U'
- ELSE
- VECT = 'N'
- END IF
- CALL SSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- *
- * For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR.
- *
- IF( .NOT.WANTZ ) THEN
- CALL SSTERF( N, W, WORK( INDE ), INFO )
- ELSE
- CALL SSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
- $ INFO )
- END IF
- RETURN
- *
- * End of SSBGV
- *
- END
|