|
- *> \brief \b SSB2ST_KERNELS
- *
- * @generated from zhb2st_kernels.f, fortran z -> s, Wed Dec 7 08:22:40 2016
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SSB2ST_KERNELS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssb2st_kernels.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssb2st_kernels.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssb2st_kernels.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
- * ST, ED, SWEEP, N, NB, IB,
- * A, LDA, V, TAU, LDVT, WORK)
- *
- * IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * LOGICAL WANTZ
- * INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), V( * ),
- * TAU( * ), WORK( * )
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SSB2ST_KERNELS is an internal routine used by the SSYTRD_SB2ST
- *> subroutine.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL which indicate if Eigenvalue are requested or both
- *> Eigenvalue/Eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] TTYPE
- *> \verbatim
- *> TTYPE is INTEGER
- *> \endverbatim
- *>
- *> \param[in] ST
- *> \verbatim
- *> ST is INTEGER
- *> internal parameter for indices.
- *> \endverbatim
- *>
- *> \param[in] ED
- *> \verbatim
- *> ED is INTEGER
- *> internal parameter for indices.
- *> \endverbatim
- *>
- *> \param[in] SWEEP
- *> \verbatim
- *> SWEEP is INTEGER
- *> internal parameter for indices.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER. The order of the matrix A.
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER. The size of the band.
- *> \endverbatim
- *>
- *> \param[in] IB
- *> \verbatim
- *> IB is INTEGER.
- *> \endverbatim
- *>
- *> \param[in, out] A
- *> \verbatim
- *> A is REAL array. A pointer to the matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER. The leading dimension of the matrix A.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is REAL array, dimension 2*n if eigenvalues only are
- *> requested or to be queried for vectors.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (2*n).
- *> The scalar factors of the Householder reflectors are stored
- *> in this array.
- *> \endverbatim
- *>
- *> \param[in] LDVT
- *> \verbatim
- *> LDVT is INTEGER.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array. Workspace of size nb.
- *> \endverbatim
- *>
- *>
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Implemented by Azzam Haidar.
- *>
- *> All details are available on technical report, SC11, SC13 papers.
- *>
- *> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
- *> Parallel reduction to condensed forms for symmetric eigenvalue problems
- *> using aggregated fine-grained and memory-aware kernels. In Proceedings
- *> of 2011 International Conference for High Performance Computing,
- *> Networking, Storage and Analysis (SC '11), New York, NY, USA,
- *> Article 8 , 11 pages.
- *> http://doi.acm.org/10.1145/2063384.2063394
- *>
- *> A. Haidar, J. Kurzak, P. Luszczek, 2013.
- *> An improved parallel singular value algorithm and its implementation
- *> for multicore hardware, In Proceedings of 2013 International Conference
- *> for High Performance Computing, Networking, Storage and Analysis (SC '13).
- *> Denver, Colorado, USA, 2013.
- *> Article 90, 12 pages.
- *> http://doi.acm.org/10.1145/2503210.2503292
- *>
- *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
- *> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
- *> calculations based on fine-grained memory aware tasks.
- *> International Journal of High Performance Computing Applications.
- *> Volume 28 Issue 2, Pages 196-209, May 2014.
- *> http://hpc.sagepub.com/content/28/2/196
- *>
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
- $ ST, ED, SWEEP, N, NB, IB,
- $ A, LDA, V, TAU, LDVT, WORK)
- *
- IMPLICIT NONE
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- LOGICAL WANTZ
- INTEGER TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), V( * ),
- $ TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0,
- $ ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, J1, J2, LM, LN, VPOS, TAUPOS,
- $ DPOS, OFDPOS, AJETER
- REAL CTMP
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARFG, SLARFX, SLARFY
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MOD
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * ..
- * .. Executable Statements ..
- *
- AJETER = IB + LDVT
- UPPER = LSAME( UPLO, 'U' )
-
- IF( UPPER ) THEN
- DPOS = 2 * NB + 1
- OFDPOS = 2 * NB
- ELSE
- DPOS = 1
- OFDPOS = 2
- ENDIF
-
- *
- * Upper case
- *
- IF( UPPER ) THEN
- *
- IF( WANTZ ) THEN
- VPOS = MOD( SWEEP-1, 2 ) * N + ST
- TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
- ELSE
- VPOS = MOD( SWEEP-1, 2 ) * N + ST
- TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
- ENDIF
- *
- IF( TTYPE.EQ.1 ) THEN
- LM = ED - ST + 1
- *
- V( VPOS ) = ONE
- DO 10 I = 1, LM-1
- V( VPOS+I ) = ( A( OFDPOS-I, ST+I ) )
- A( OFDPOS-I, ST+I ) = ZERO
- 10 CONTINUE
- CTMP = ( A( OFDPOS, ST ) )
- CALL SLARFG( LM, CTMP, V( VPOS+1 ), 1,
- $ TAU( TAUPOS ) )
- A( OFDPOS, ST ) = CTMP
- *
- LM = ED - ST + 1
- CALL SLARFY( UPLO, LM, V( VPOS ), 1,
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS, ST ), LDA-1, WORK)
- ENDIF
- *
- IF( TTYPE.EQ.3 ) THEN
- *
- LM = ED - ST + 1
- CALL SLARFY( UPLO, LM, V( VPOS ), 1,
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS, ST ), LDA-1, WORK)
- ENDIF
- *
- IF( TTYPE.EQ.2 ) THEN
- J1 = ED+1
- J2 = MIN( ED+NB, N )
- LN = ED-ST+1
- LM = J2-J1+1
- IF( LM.GT.0) THEN
- CALL SLARFX( 'Left', LN, LM, V( VPOS ),
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS-NB, J1 ), LDA-1, WORK)
- *
- IF( WANTZ ) THEN
- VPOS = MOD( SWEEP-1, 2 ) * N + J1
- TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
- ELSE
- VPOS = MOD( SWEEP-1, 2 ) * N + J1
- TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
- ENDIF
- *
- V( VPOS ) = ONE
- DO 30 I = 1, LM-1
- V( VPOS+I ) =
- $ ( A( DPOS-NB-I, J1+I ) )
- A( DPOS-NB-I, J1+I ) = ZERO
- 30 CONTINUE
- CTMP = ( A( DPOS-NB, J1 ) )
- CALL SLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
- A( DPOS-NB, J1 ) = CTMP
- *
- CALL SLARFX( 'Right', LN-1, LM, V( VPOS ),
- $ TAU( TAUPOS ),
- $ A( DPOS-NB+1, J1 ), LDA-1, WORK)
- ENDIF
- ENDIF
- *
- * Lower case
- *
- ELSE
- *
- IF( WANTZ ) THEN
- VPOS = MOD( SWEEP-1, 2 ) * N + ST
- TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
- ELSE
- VPOS = MOD( SWEEP-1, 2 ) * N + ST
- TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
- ENDIF
- *
- IF( TTYPE.EQ.1 ) THEN
- LM = ED - ST + 1
- *
- V( VPOS ) = ONE
- DO 20 I = 1, LM-1
- V( VPOS+I ) = A( OFDPOS+I, ST-1 )
- A( OFDPOS+I, ST-1 ) = ZERO
- 20 CONTINUE
- CALL SLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
- $ TAU( TAUPOS ) )
- *
- LM = ED - ST + 1
- *
- CALL SLARFY( UPLO, LM, V( VPOS ), 1,
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS, ST ), LDA-1, WORK)
-
- ENDIF
- *
- IF( TTYPE.EQ.3 ) THEN
- LM = ED - ST + 1
- *
- CALL SLARFY( UPLO, LM, V( VPOS ), 1,
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS, ST ), LDA-1, WORK)
-
- ENDIF
- *
- IF( TTYPE.EQ.2 ) THEN
- J1 = ED+1
- J2 = MIN( ED+NB, N )
- LN = ED-ST+1
- LM = J2-J1+1
- *
- IF( LM.GT.0) THEN
- CALL SLARFX( 'Right', LM, LN, V( VPOS ),
- $ TAU( TAUPOS ), A( DPOS+NB, ST ),
- $ LDA-1, WORK)
- *
- IF( WANTZ ) THEN
- VPOS = MOD( SWEEP-1, 2 ) * N + J1
- TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
- ELSE
- VPOS = MOD( SWEEP-1, 2 ) * N + J1
- TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
- ENDIF
- *
- V( VPOS ) = ONE
- DO 40 I = 1, LM-1
- V( VPOS+I ) = A( DPOS+NB+I, ST )
- A( DPOS+NB+I, ST ) = ZERO
- 40 CONTINUE
- CALL SLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
- $ TAU( TAUPOS ) )
- *
- CALL SLARFX( 'Left', LM, LN-1, V( VPOS ),
- $ ( TAU( TAUPOS ) ),
- $ A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
-
- ENDIF
- ENDIF
- ENDIF
- *
- RETURN
- *
- * End of SSB2ST_KERNELS
- *
- END
|