|
- *> \brief \b SPTTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPTTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spttrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spttrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spttrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTTRF( N, D, E, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- * REAL D( * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTTRF computes the L*D*L**T factorization of a real symmetric
- *> positive definite tridiagonal matrix A. The factorization may also
- *> be regarded as having the form A = U**T*D*U.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, the n diagonal elements of the tridiagonal matrix
- *> A. On exit, the n diagonal elements of the diagonal matrix
- *> D from the L*D*L**T factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> On entry, the (n-1) subdiagonal elements of the tridiagonal
- *> matrix A. On exit, the (n-1) subdiagonal elements of the
- *> unit bidiagonal factor L from the L*D*L**T factorization of A.
- *> E can also be regarded as the superdiagonal of the unit
- *> bidiagonal factor U from the U**T*D*U factorization of A.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -k, the k-th argument had an illegal value
- *> > 0: if INFO = k, the leading minor of order k is not
- *> positive definite; if k < N, the factorization could not
- *> be completed, while if k = N, the factorization was
- *> completed, but D(N) <= 0.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SPTTRF( N, D, E, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, N
- * ..
- * .. Array Arguments ..
- REAL D( * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I4
- REAL EI
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MOD
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- CALL XERBLA( 'SPTTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Compute the L*D*L**T (or U**T*D*U) factorization of A.
- *
- I4 = MOD( N-1, 4 )
- DO 10 I = 1, I4
- IF( D( I ).LE.ZERO ) THEN
- INFO = I
- GO TO 30
- END IF
- EI = E( I )
- E( I ) = EI / D( I )
- D( I+1 ) = D( I+1 ) - E( I )*EI
- 10 CONTINUE
- *
- DO 20 I = I4 + 1, N - 4, 4
- *
- * Drop out of the loop if d(i) <= 0: the matrix is not positive
- * definite.
- *
- IF( D( I ).LE.ZERO ) THEN
- INFO = I
- GO TO 30
- END IF
- *
- * Solve for e(i) and d(i+1).
- *
- EI = E( I )
- E( I ) = EI / D( I )
- D( I+1 ) = D( I+1 ) - E( I )*EI
- *
- IF( D( I+1 ).LE.ZERO ) THEN
- INFO = I + 1
- GO TO 30
- END IF
- *
- * Solve for e(i+1) and d(i+2).
- *
- EI = E( I+1 )
- E( I+1 ) = EI / D( I+1 )
- D( I+2 ) = D( I+2 ) - E( I+1 )*EI
- *
- IF( D( I+2 ).LE.ZERO ) THEN
- INFO = I + 2
- GO TO 30
- END IF
- *
- * Solve for e(i+2) and d(i+3).
- *
- EI = E( I+2 )
- E( I+2 ) = EI / D( I+2 )
- D( I+3 ) = D( I+3 ) - E( I+2 )*EI
- *
- IF( D( I+3 ).LE.ZERO ) THEN
- INFO = I + 3
- GO TO 30
- END IF
- *
- * Solve for e(i+3) and d(i+4).
- *
- EI = E( I+3 )
- E( I+3 ) = EI / D( I+3 )
- D( I+4 ) = D( I+4 ) - E( I+3 )*EI
- 20 CONTINUE
- *
- * Check d(n) for positive definiteness.
- *
- IF( D( N ).LE.ZERO )
- $ INFO = N
- *
- 30 CONTINUE
- RETURN
- *
- * End of SPTTRF
- *
- END
|