|
- *> \brief <b> SPTSVX computes the solution to system of linear equations A * X = B for PT matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPTSVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptsvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptsvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptsvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
- * RCOND, FERR, BERR, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER FACT
- * INTEGER INFO, LDB, LDX, N, NRHS
- * REAL RCOND
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
- * $ E( * ), EF( * ), FERR( * ), WORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTSVX uses the factorization A = L*D*L**T to compute the solution
- *> to a real system of linear equations A*X = B, where A is an N-by-N
- *> symmetric positive definite tridiagonal matrix and X and B are
- *> N-by-NRHS matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
- *> is a unit lower bidiagonal matrix and D is diagonal. The
- *> factorization can also be regarded as having the form
- *> A = U**T*D*U.
- *>
- *> 2. If the leading i-by-i principal minor is not positive definite,
- *> then the routine returns with INFO = i. Otherwise, the factored
- *> form of A is used to estimate the condition number of the matrix
- *> A. If the reciprocal of the condition number is less than machine
- *> precision, INFO = N+1 is returned as a warning, but the routine
- *> still goes on to solve for X and compute error bounds as
- *> described below.
- *>
- *> 3. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 4. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of A has been
- *> supplied on entry.
- *> = 'F': On entry, DF and EF contain the factored form of A.
- *> D, E, DF, and EF will not be modified.
- *> = 'N': The matrix A will be copied to DF and EF and
- *> factored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in,out] DF
- *> \verbatim
- *> DF is REAL array, dimension (N)
- *> If FACT = 'F', then DF is an input argument and on entry
- *> contains the n diagonal elements of the diagonal matrix D
- *> from the L*D*L**T factorization of A.
- *> If FACT = 'N', then DF is an output argument and on exit
- *> contains the n diagonal elements of the diagonal matrix D
- *> from the L*D*L**T factorization of A.
- *> \endverbatim
- *>
- *> \param[in,out] EF
- *> \verbatim
- *> EF is REAL array, dimension (N-1)
- *> If FACT = 'F', then EF is an input argument and on entry
- *> contains the (n-1) subdiagonal elements of the unit
- *> bidiagonal factor L from the L*D*L**T factorization of A.
- *> If FACT = 'N', then EF is an output argument and on exit
- *> contains the (n-1) subdiagonal elements of the unit
- *> bidiagonal factor L from the L*D*L**T factorization of A.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The N-by-NRHS right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is REAL
- *> The reciprocal condition number of the matrix A. If RCOND
- *> is less than the machine precision (in particular, if
- *> RCOND = 0), the matrix is singular to working precision.
- *> This condition is indicated by a return code of INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j).
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in any
- *> element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: the leading minor of order i of A is
- *> not positive definite, so the factorization
- *> could not be completed, and the solution has not
- *> been computed. RCOND = 0 is returned.
- *> = N+1: U is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realPTsolve
- *
- * =====================================================================
- SUBROUTINE SPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
- $ RCOND, FERR, BERR, WORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER FACT
- INTEGER INFO, LDB, LDX, N, NRHS
- REAL RCOND
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
- $ E( * ), EF( * ), FERR( * ), WORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOFACT
- REAL ANORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH, SLANST
- EXTERNAL LSAME, SLAMCH, SLANST
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SLACPY, SPTCON, SPTRFS, SPTTRF, SPTTRS,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -11
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPTSVX', -INFO )
- RETURN
- END IF
- *
- IF( NOFACT ) THEN
- *
- * Compute the L*D*L**T (or U**T*D*U) factorization of A.
- *
- CALL SCOPY( N, D, 1, DF, 1 )
- IF( N.GT.1 )
- $ CALL SCOPY( N-1, E, 1, EF, 1 )
- CALL SPTTRF( N, DF, EF, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 )THEN
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A.
- *
- ANORM = SLANST( '1', N, D, E )
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL SPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
- *
- * Compute the solution vectors X.
- *
- CALL SLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL SPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solutions and
- * compute error bounds and backward error estimates for them.
- *
- CALL SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
- $ WORK, INFO )
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.SLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- *
- RETURN
- *
- * End of SPTSVX
- *
- END
|