|
- *> \brief \b SPTRFS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPTRFS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sptrfs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sptrfs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sptrfs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
- * BERR, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
- * $ E( * ), EF( * ), FERR( * ), WORK( * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPTRFS improves the computed solution to a system of linear
- *> equations when the coefficient matrix is symmetric positive definite
- *> and tridiagonal, and provides error bounds and backward error
- *> estimates for the solution.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> The n diagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the tridiagonal matrix A.
- *> \endverbatim
- *>
- *> \param[in] DF
- *> \verbatim
- *> DF is REAL array, dimension (N)
- *> The n diagonal elements of the diagonal matrix D from the
- *> factorization computed by SPTTRF.
- *> \endverbatim
- *>
- *> \param[in] EF
- *> \verbatim
- *> EF is REAL array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the unit bidiagonal factor
- *> L from the factorization computed by SPTTRF.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> On entry, the solution matrix X, as computed by SPTTRS.
- *> On exit, the improved solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j).
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> ITMAX is the maximum number of steps of iterative refinement.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realPTcomputational
- *
- * =====================================================================
- SUBROUTINE SPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
- $ BERR, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), BERR( * ), D( * ), DF( * ),
- $ E( * ), EF( * ), FERR( * ), WORK( * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER ITMAX
- PARAMETER ( ITMAX = 5 )
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- REAL TWO
- PARAMETER ( TWO = 2.0E+0 )
- REAL THREE
- PARAMETER ( THREE = 3.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER COUNT, I, IX, J, NZ
- REAL BI, CX, DX, EPS, EX, LSTRES, S, SAFE1, SAFE2,
- $ SAFMIN
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SPTTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SLAMCH
- EXTERNAL ISAMAX, SLAMCH
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPTRFS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- DO 10 J = 1, NRHS
- FERR( J ) = ZERO
- BERR( J ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- * NZ = maximum number of nonzero elements in each row of A, plus 1
- *
- NZ = 4
- EPS = SLAMCH( 'Epsilon' )
- SAFMIN = SLAMCH( 'Safe minimum' )
- SAFE1 = NZ*SAFMIN
- SAFE2 = SAFE1 / EPS
- *
- * Do for each right hand side
- *
- DO 90 J = 1, NRHS
- *
- COUNT = 1
- LSTRES = THREE
- 20 CONTINUE
- *
- * Loop until stopping criterion is satisfied.
- *
- * Compute residual R = B - A * X. Also compute
- * abs(A)*abs(x) + abs(b) for use in the backward error bound.
- *
- IF( N.EQ.1 ) THEN
- BI = B( 1, J )
- DX = D( 1 )*X( 1, J )
- WORK( N+1 ) = BI - DX
- WORK( 1 ) = ABS( BI ) + ABS( DX )
- ELSE
- BI = B( 1, J )
- DX = D( 1 )*X( 1, J )
- EX = E( 1 )*X( 2, J )
- WORK( N+1 ) = BI - DX - EX
- WORK( 1 ) = ABS( BI ) + ABS( DX ) + ABS( EX )
- DO 30 I = 2, N - 1
- BI = B( I, J )
- CX = E( I-1 )*X( I-1, J )
- DX = D( I )*X( I, J )
- EX = E( I )*X( I+1, J )
- WORK( N+I ) = BI - CX - DX - EX
- WORK( I ) = ABS( BI ) + ABS( CX ) + ABS( DX ) + ABS( EX )
- 30 CONTINUE
- BI = B( N, J )
- CX = E( N-1 )*X( N-1, J )
- DX = D( N )*X( N, J )
- WORK( N+N ) = BI - CX - DX
- WORK( N ) = ABS( BI ) + ABS( CX ) + ABS( DX )
- END IF
- *
- * Compute componentwise relative backward error from formula
- *
- * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
- *
- * where abs(Z) is the componentwise absolute value of the matrix
- * or vector Z. If the i-th component of the denominator is less
- * than SAFE2, then SAFE1 is added to the i-th components of the
- * numerator and denominator before dividing.
- *
- S = ZERO
- DO 40 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
- ELSE
- S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
- $ ( WORK( I )+SAFE1 ) )
- END IF
- 40 CONTINUE
- BERR( J ) = S
- *
- * Test stopping criterion. Continue iterating if
- * 1) The residual BERR(J) is larger than machine epsilon, and
- * 2) BERR(J) decreased by at least a factor of 2 during the
- * last iteration, and
- * 3) At most ITMAX iterations tried.
- *
- IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
- $ COUNT.LE.ITMAX ) THEN
- *
- * Update solution and try again.
- *
- CALL SPTTRS( N, 1, DF, EF, WORK( N+1 ), N, INFO )
- CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
- LSTRES = BERR( J )
- COUNT = COUNT + 1
- GO TO 20
- END IF
- *
- * Bound error from formula
- *
- * norm(X - XTRUE) / norm(X) .le. FERR =
- * norm( abs(inv(A))*
- * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
- *
- * where
- * norm(Z) is the magnitude of the largest component of Z
- * inv(A) is the inverse of A
- * abs(Z) is the componentwise absolute value of the matrix or
- * vector Z
- * NZ is the maximum number of nonzeros in any row of A, plus 1
- * EPS is machine epsilon
- *
- * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
- * is incremented by SAFE1 if the i-th component of
- * abs(A)*abs(X) + abs(B) is less than SAFE2.
- *
- DO 50 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
- ELSE
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
- END IF
- 50 CONTINUE
- IX = ISAMAX( N, WORK, 1 )
- FERR( J ) = WORK( IX )
- *
- * Estimate the norm of inv(A).
- *
- * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
- *
- * m(i,j) = abs(A(i,j)), i = j,
- * m(i,j) = -abs(A(i,j)), i .ne. j,
- *
- * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**T.
- *
- * Solve M(L) * x = e.
- *
- WORK( 1 ) = ONE
- DO 60 I = 2, N
- WORK( I ) = ONE + WORK( I-1 )*ABS( EF( I-1 ) )
- 60 CONTINUE
- *
- * Solve D * M(L)**T * x = b.
- *
- WORK( N ) = WORK( N ) / DF( N )
- DO 70 I = N - 1, 1, -1
- WORK( I ) = WORK( I ) / DF( I ) + WORK( I+1 )*ABS( EF( I ) )
- 70 CONTINUE
- *
- * Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
- *
- IX = ISAMAX( N, WORK, 1 )
- FERR( J ) = FERR( J )*ABS( WORK( IX ) )
- *
- * Normalize error.
- *
- LSTRES = ZERO
- DO 80 I = 1, N
- LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
- 80 CONTINUE
- IF( LSTRES.NE.ZERO )
- $ FERR( J ) = FERR( J ) / LSTRES
- *
- 90 CONTINUE
- *
- RETURN
- *
- * End of SPTRFS
- *
- END
|