|
- *> \brief \b SPSTRF computes the Cholesky factorization with complete pivoting of a real symmetric positive semidefinite matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPSTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spstrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spstrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spstrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * REAL TOL
- * INTEGER INFO, LDA, N, RANK
- * CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), WORK( 2*N )
- * INTEGER PIV( N )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPSTRF computes the Cholesky factorization with complete
- *> pivoting of a real symmetric positive semidefinite matrix A.
- *>
- *> The factorization has the form
- *> P**T * A * P = U**T * U , if UPLO = 'U',
- *> P**T * A * P = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular, and
- *> P is stored as vector PIV.
- *>
- *> This algorithm does not attempt to check that A is positive
- *> semidefinite. This version of the algorithm calls level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the upper or lower triangular part of the
- *> symmetric matrix A is stored.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> n by n upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading n by n lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the factor U or L from the Cholesky
- *> factorization as above.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] PIV
- *> \verbatim
- *> PIV is INTEGER array, dimension (N)
- *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
- *> \endverbatim
- *>
- *> \param[out] RANK
- *> \verbatim
- *> RANK is INTEGER
- *> The rank of A given by the number of steps the algorithm
- *> completed.
- *> \endverbatim
- *>
- *> \param[in] TOL
- *> \verbatim
- *> TOL is REAL
- *> User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) )
- *> will be used. The algorithm terminates at the (K-1)st step
- *> if the pivot <= TOL.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (2*N)
- *> Work space.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> < 0: If INFO = -K, the K-th argument had an illegal value,
- *> = 0: algorithm completed successfully, and
- *> > 0: the matrix A is either rank deficient with computed rank
- *> as returned in RANK, or is not positive semidefinite. See
- *> Section 7 of LAPACK Working Note #161 for further
- *> information.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- REAL TOL
- INTEGER INFO, LDA, N, RANK
- CHARACTER UPLO
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), WORK( 2*N )
- INTEGER PIV( N )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- REAL AJJ, SSTOP, STEMP
- INTEGER I, ITEMP, J, JB, K, NB, PVT
- LOGICAL UPPER
- * ..
- * .. External Functions ..
- REAL SLAMCH
- INTEGER ILAENV
- LOGICAL LSAME, SISNAN
- EXTERNAL SLAMCH, ILAENV, LSAME, SISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SPSTF2, SSCAL, SSWAP, SSYRK, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT, MAXLOC
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPSTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Get block size
- *
- NB = ILAENV( 1, 'SPOTRF', UPLO, N, -1, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.N ) THEN
- *
- * Use unblocked code
- *
- CALL SPSTF2( UPLO, N, A( 1, 1 ), LDA, PIV, RANK, TOL, WORK,
- $ INFO )
- GO TO 200
- *
- ELSE
- *
- * Initialize PIV
- *
- DO 100 I = 1, N
- PIV( I ) = I
- 100 CONTINUE
- *
- * Compute stopping value
- *
- PVT = 1
- AJJ = A( PVT, PVT )
- DO I = 2, N
- IF( A( I, I ).GT.AJJ ) THEN
- PVT = I
- AJJ = A( PVT, PVT )
- END IF
- END DO
- IF( AJJ.LE.ZERO.OR.SISNAN( AJJ ) ) THEN
- RANK = 0
- INFO = 1
- GO TO 200
- END IF
- *
- * Compute stopping value if not supplied
- *
- IF( TOL.LT.ZERO ) THEN
- SSTOP = N * SLAMCH( 'Epsilon' ) * AJJ
- ELSE
- SSTOP = TOL
- END IF
- *
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization P**T * A * P = U**T * U
- *
- DO 140 K = 1, N, NB
- *
- * Account for last block not being NB wide
- *
- JB = MIN( NB, N-K+1 )
- *
- * Set relevant part of first half of WORK to zero,
- * holds dot products
- *
- DO 110 I = K, N
- WORK( I ) = 0
- 110 CONTINUE
- *
- DO 130 J = K, K + JB - 1
- *
- * Find pivot, test for exit, else swap rows and columns
- * Update dot products, compute possible pivots which are
- * stored in the second half of WORK
- *
- DO 120 I = J, N
- *
- IF( J.GT.K ) THEN
- WORK( I ) = WORK( I ) + A( J-1, I )**2
- END IF
- WORK( N+I ) = A( I, I ) - WORK( I )
- *
- 120 CONTINUE
- *
- IF( J.GT.1 ) THEN
- ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
- PVT = ITEMP + J - 1
- AJJ = WORK( N+PVT )
- IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 190
- END IF
- END IF
- *
- IF( J.NE.PVT ) THEN
- *
- * Pivot OK, so can now swap pivot rows and columns
- *
- A( PVT, PVT ) = A( J, J )
- CALL SSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
- IF( PVT.LT.N )
- $ CALL SSWAP( N-PVT, A( J, PVT+1 ), LDA,
- $ A( PVT, PVT+1 ), LDA )
- CALL SSWAP( PVT-J-1, A( J, J+1 ), LDA,
- $ A( J+1, PVT ), 1 )
- *
- * Swap dot products and PIV
- *
- STEMP = WORK( J )
- WORK( J ) = WORK( PVT )
- WORK( PVT ) = STEMP
- ITEMP = PIV( PVT )
- PIV( PVT ) = PIV( J )
- PIV( J ) = ITEMP
- END IF
- *
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of row J.
- *
- IF( J.LT.N ) THEN
- CALL SGEMV( 'Trans', J-K, N-J, -ONE, A( K, J+1 ),
- $ LDA, A( K, J ), 1, ONE, A( J, J+1 ),
- $ LDA )
- CALL SSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
- END IF
- *
- 130 CONTINUE
- *
- * Update trailing matrix, J already incremented
- *
- IF( K+JB.LE.N ) THEN
- CALL SSYRK( 'Upper', 'Trans', N-J+1, JB, -ONE,
- $ A( K, J ), LDA, ONE, A( J, J ), LDA )
- END IF
- *
- 140 CONTINUE
- *
- ELSE
- *
- * Compute the Cholesky factorization P**T * A * P = L * L**T
- *
- DO 180 K = 1, N, NB
- *
- * Account for last block not being NB wide
- *
- JB = MIN( NB, N-K+1 )
- *
- * Set relevant part of first half of WORK to zero,
- * holds dot products
- *
- DO 150 I = K, N
- WORK( I ) = 0
- 150 CONTINUE
- *
- DO 170 J = K, K + JB - 1
- *
- * Find pivot, test for exit, else swap rows and columns
- * Update dot products, compute possible pivots which are
- * stored in the second half of WORK
- *
- DO 160 I = J, N
- *
- IF( J.GT.K ) THEN
- WORK( I ) = WORK( I ) + A( I, J-1 )**2
- END IF
- WORK( N+I ) = A( I, I ) - WORK( I )
- *
- 160 CONTINUE
- *
- IF( J.GT.1 ) THEN
- ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
- PVT = ITEMP + J - 1
- AJJ = WORK( N+PVT )
- IF( AJJ.LE.SSTOP.OR.SISNAN( AJJ ) ) THEN
- A( J, J ) = AJJ
- GO TO 190
- END IF
- END IF
- *
- IF( J.NE.PVT ) THEN
- *
- * Pivot OK, so can now swap pivot rows and columns
- *
- A( PVT, PVT ) = A( J, J )
- CALL SSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
- IF( PVT.LT.N )
- $ CALL SSWAP( N-PVT, A( PVT+1, J ), 1,
- $ A( PVT+1, PVT ), 1 )
- CALL SSWAP( PVT-J-1, A( J+1, J ), 1, A( PVT, J+1 ),
- $ LDA )
- *
- * Swap dot products and PIV
- *
- STEMP = WORK( J )
- WORK( J ) = WORK( PVT )
- WORK( PVT ) = STEMP
- ITEMP = PIV( PVT )
- PIV( PVT ) = PIV( J )
- PIV( J ) = ITEMP
- END IF
- *
- AJJ = SQRT( AJJ )
- A( J, J ) = AJJ
- *
- * Compute elements J+1:N of column J.
- *
- IF( J.LT.N ) THEN
- CALL SGEMV( 'No Trans', N-J, J-K, -ONE,
- $ A( J+1, K ), LDA, A( J, K ), LDA, ONE,
- $ A( J+1, J ), 1 )
- CALL SSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
- END IF
- *
- 170 CONTINUE
- *
- * Update trailing matrix, J already incremented
- *
- IF( K+JB.LE.N ) THEN
- CALL SSYRK( 'Lower', 'No Trans', N-J+1, JB, -ONE,
- $ A( J, K ), LDA, ONE, A( J, J ), LDA )
- END IF
- *
- 180 CONTINUE
- *
- END IF
- END IF
- *
- * Ran to completion, A has full rank
- *
- RANK = N
- *
- GO TO 200
- 190 CONTINUE
- *
- * Rank is the number of steps completed. Set INFO = 1 to signal
- * that the factorization cannot be used to solve a system.
- *
- RANK = J - 1
- INFO = 1
- *
- 200 CONTINUE
- RETURN
- *
- * End of SPSTRF
- *
- END
|