|
- /* f2c.h -- Standard Fortran to C header file */
-
- /** barf [ba:rf] 2. "He suggested using FORTRAN, and everybody barfed."
-
- - From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
-
- #ifndef F2C_INCLUDE
- #define F2C_INCLUDE
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimag(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static integer c__0 = 0;
- static integer c__1 = 1;
-
- /* > \brief \b SPORFSX */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SPORFSX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sporfsx
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sporfsx
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sporfsx
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B, */
- /* LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, */
- /* ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, */
- /* WORK, IWORK, INFO ) */
-
- /* CHARACTER UPLO, EQUED */
- /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, */
- /* $ N_ERR_BNDS */
- /* REAL RCOND */
- /* INTEGER IWORK( * ) */
- /* REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
- /* $ X( LDX, * ), WORK( * ) */
- /* REAL S( * ), PARAMS( * ), BERR( * ), */
- /* $ ERR_BNDS_NORM( NRHS, * ), */
- /* $ ERR_BNDS_COMP( NRHS, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SPORFSX improves the computed solution to a system of linear */
- /* > equations when the coefficient matrix is symmetric positive */
- /* > definite, and provides error bounds and backward error estimates */
- /* > for the solution. In addition to normwise error bound, the code */
- /* > provides maximum componentwise error bound if possible. See */
- /* > comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
- /* > error bounds. */
- /* > */
- /* > The original system of linear equations may have been equilibrated */
- /* > before calling this routine, as described by arguments EQUED and S */
- /* > below. In this case, the solution and error bounds returned are */
- /* > for the original unequilibrated system. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \verbatim */
- /* > Some optional parameters are bundled in the PARAMS array. These */
- /* > settings determine how refinement is performed, but often the */
- /* > defaults are acceptable. If the defaults are acceptable, users */
- /* > can pass NPARAMS = 0 which prevents the source code from accessing */
- /* > the PARAMS argument. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] EQUED */
- /* > \verbatim */
- /* > EQUED is CHARACTER*1 */
- /* > Specifies the form of equilibration that was done to A */
- /* > before calling this routine. This is needed to compute */
- /* > the solution and error bounds correctly. */
- /* > = 'N': No equilibration */
- /* > = 'Y': Both row and column equilibration, i.e., A has been */
- /* > replaced by diag(S) * A * diag(S). */
- /* > The right hand side B has been changed accordingly. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
- /* > upper triangular part of A contains the upper triangular part */
- /* > of the matrix A, and the strictly lower triangular part of A */
- /* > is not referenced. If UPLO = 'L', the leading N-by-N lower */
- /* > triangular part of A contains the lower triangular part of */
- /* > the matrix A, and the strictly upper triangular part of A is */
- /* > not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AF */
- /* > \verbatim */
- /* > AF is REAL array, dimension (LDAF,N) */
- /* > The triangular factor U or L from the Cholesky factorization */
- /* > A = U**T*U or A = L*L**T, as computed by SPOTRF. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAF */
- /* > \verbatim */
- /* > LDAF is INTEGER */
- /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] S */
- /* > \verbatim */
- /* > S is REAL array, dimension (N) */
- /* > The scale factors for A. If EQUED = 'Y', A is multiplied on */
- /* > the left and right by diag(S). S is an input argument if FACT = */
- /* > 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */
- /* > = 'Y', each element of S must be positive. If S is output, each */
- /* > element of S is a power of the radix. If S is input, each element */
- /* > of S should be a power of the radix to ensure a reliable solution */
- /* > and error estimates. Scaling by powers of the radix does not cause */
- /* > rounding errors unless the result underflows or overflows. */
- /* > Rounding errors during scaling lead to refining with a matrix that */
- /* > is not equivalent to the input matrix, producing error estimates */
- /* > that may not be reliable. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,NRHS) */
- /* > The right hand side matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] X */
- /* > \verbatim */
- /* > X is REAL array, dimension (LDX,NRHS) */
- /* > On entry, the solution matrix X, as computed by SGETRS. */
- /* > On exit, the improved solution matrix X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCOND */
- /* > \verbatim */
- /* > RCOND is REAL */
- /* > Reciprocal scaled condition number. This is an estimate of the */
- /* > reciprocal Skeel condition number of the matrix A after */
- /* > equilibration (if done). If this is less than the machine */
- /* > precision (in particular, if it is zero), the matrix is singular */
- /* > to working precision. Note that the error may still be small even */
- /* > if this number is very small and the matrix appears ill- */
- /* > conditioned. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BERR */
- /* > \verbatim */
- /* > BERR is REAL array, dimension (NRHS) */
- /* > Componentwise relative backward error. This is the */
- /* > componentwise relative backward error of each solution vector X(j) */
- /* > (i.e., the smallest relative change in any element of A or B that */
- /* > makes X(j) an exact solution). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N_ERR_BNDS */
- /* > \verbatim */
- /* > N_ERR_BNDS is INTEGER */
- /* > Number of error bounds to return for each right hand side */
- /* > and each type (normwise or componentwise). See ERR_BNDS_NORM and */
- /* > ERR_BNDS_COMP below. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ERR_BNDS_NORM */
- /* > \verbatim */
- /* > ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
- /* > For each right-hand side, this array contains information about */
- /* > various error bounds and condition numbers corresponding to the */
- /* > normwise relative error, which is defined as follows: */
- /* > */
- /* > Normwise relative error in the ith solution vector: */
- /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
- /* > ------------------------------ */
- /* > max_j abs(X(j,i)) */
- /* > */
- /* > The array is indexed by the type of error information as described */
- /* > below. There currently are up to three pieces of information */
- /* > returned. */
- /* > */
- /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
- /* > right-hand side. */
- /* > */
- /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
- /* > three fields: */
- /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* > reciprocal condition number is less than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). */
- /* > */
- /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* > almost certainly within a factor of 10 of the true error */
- /* > so long as the next entry is greater than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* > be trusted if the previous boolean is true. */
- /* > */
- /* > err = 3 Reciprocal condition number: Estimated normwise */
- /* > reciprocal condition number. Compared with the threshold */
- /* > sqrt(n) * slamch('Epsilon') to determine if the error */
- /* > estimate is "guaranteed". These reciprocal condition */
- /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* > appropriately scaled matrix Z. */
- /* > Let Z = S*A, where S scales each row by a power of the */
- /* > radix so all absolute row sums of Z are approximately 1. */
- /* > */
- /* > See Lapack Working Note 165 for further details and extra */
- /* > cautions. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ERR_BNDS_COMP */
- /* > \verbatim */
- /* > ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
- /* > For each right-hand side, this array contains information about */
- /* > various error bounds and condition numbers corresponding to the */
- /* > componentwise relative error, which is defined as follows: */
- /* > */
- /* > Componentwise relative error in the ith solution vector: */
- /* > abs(XTRUE(j,i) - X(j,i)) */
- /* > max_j ---------------------- */
- /* > abs(X(j,i)) */
- /* > */
- /* > The array is indexed by the right-hand side i (on which the */
- /* > componentwise relative error depends), and the type of error */
- /* > information as described below. There currently are up to three */
- /* > pieces of information returned for each right-hand side. If */
- /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
- /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
- /* > the first (:,N_ERR_BNDS) entries are returned. */
- /* > */
- /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
- /* > right-hand side. */
- /* > */
- /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
- /* > three fields: */
- /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* > reciprocal condition number is less than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). */
- /* > */
- /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* > almost certainly within a factor of 10 of the true error */
- /* > so long as the next entry is greater than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* > be trusted if the previous boolean is true. */
- /* > */
- /* > err = 3 Reciprocal condition number: Estimated componentwise */
- /* > reciprocal condition number. Compared with the threshold */
- /* > sqrt(n) * slamch('Epsilon') to determine if the error */
- /* > estimate is "guaranteed". These reciprocal condition */
- /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* > appropriately scaled matrix Z. */
- /* > Let Z = S*(A*diag(x)), where x is the solution for the */
- /* > current right-hand side and S scales each row of */
- /* > A*diag(x) by a power of the radix so all absolute row */
- /* > sums of Z are approximately 1. */
- /* > */
- /* > See Lapack Working Note 165 for further details and extra */
- /* > cautions. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NPARAMS */
- /* > \verbatim */
- /* > NPARAMS is INTEGER */
- /* > Specifies the number of parameters set in PARAMS. If <= 0, the */
- /* > PARAMS array is never referenced and default values are used. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] PARAMS */
- /* > \verbatim */
- /* > PARAMS is REAL array, dimension NPARAMS */
- /* > Specifies algorithm parameters. If an entry is < 0.0, then */
- /* > that entry will be filled with default value used for that */
- /* > parameter. Only positions up to NPARAMS are accessed; defaults */
- /* > are used for higher-numbered parameters. */
- /* > */
- /* > PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
- /* > refinement or not. */
- /* > Default: 1.0 */
- /* > = 0.0: No refinement is performed, and no error bounds are */
- /* > computed. */
- /* > = 1.0: Use the double-precision refinement algorithm, */
- /* > possibly with doubled-single computations if the */
- /* > compilation environment does not support DOUBLE */
- /* > PRECISION. */
- /* > (other values are reserved for future use) */
- /* > */
- /* > PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
- /* > computations allowed for refinement. */
- /* > Default: 10 */
- /* > Aggressive: Set to 100 to permit convergence using approximate */
- /* > factorizations or factorizations other than LU. If */
- /* > the factorization uses a technique other than */
- /* > Gaussian elimination, the guarantees in */
- /* > err_bnds_norm and err_bnds_comp may no longer be */
- /* > trustworthy. */
- /* > */
- /* > PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
- /* > will attempt to find a solution with small componentwise */
- /* > relative error in the double-precision algorithm. Positive */
- /* > is true, 0.0 is false. */
- /* > Default: 1.0 (attempt componentwise convergence) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (4*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: Successful exit. The solution to every right-hand side is */
- /* > guaranteed. */
- /* > < 0: If INFO = -i, the i-th argument had an illegal value */
- /* > > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
- /* > has been completed, but the factor U is exactly singular, so */
- /* > the solution and error bounds could not be computed. RCOND = 0 */
- /* > is returned. */
- /* > = N+J: The solution corresponding to the Jth right-hand side is */
- /* > not guaranteed. The solutions corresponding to other right- */
- /* > hand sides K with K > J may not be guaranteed as well, but */
- /* > only the first such right-hand side is reported. If a small */
- /* > componentwise error is not requested (PARAMS(3) = 0.0) then */
- /* > the Jth right-hand side is the first with a normwise error */
- /* > bound that is not guaranteed (the smallest J such */
- /* > that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
- /* > the Jth right-hand side is the first with either a normwise or */
- /* > componentwise error bound that is not guaranteed (the smallest */
- /* > J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
- /* > ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
- /* > ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
- /* > about all of the right-hand sides check ERR_BNDS_NORM or */
- /* > ERR_BNDS_COMP. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup realPOcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void sporfsx_(char *uplo, char *equed, integer *n, integer *
- nrhs, real *a, integer *lda, real *af, integer *ldaf, real *s, real *
- b, integer *ldb, real *x, integer *ldx, real *rcond, real *berr,
- integer *n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__,
- integer *nparams, real *params, real *work, integer *iwork, integer *
- info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
- x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
- err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
- real r__1, r__2;
-
- /* Local variables */
- real illrcond_thresh__, unstable_thresh__;
- extern /* Subroutine */ void sla_porfsx_extended_(integer *, char *,
- integer *, integer *, real *, integer *, real *, integer *,
- logical *, real *, real *, integer *, real *, integer *, real *,
- integer *, real *, real *, real *, real *, real *, real *, real *,
- integer *, real *, real *, logical *, integer *);
- real err_lbnd__;
- char norm[1];
- integer ref_type__;
- logical ignore_cwise__;
- integer j;
- extern logical lsame_(char *, char *);
- real anorm;
- logical rcequ;
- real rcond_tmp__;
- integer prec_type__;
- extern real slamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void spocon_(
- char *, integer *, real *, integer *, real *, real *, real *,
- integer *, integer *);
- extern real slansy_(char *, char *, integer *, real *, integer *, real *);
- extern integer ilaprec_(char *);
- integer ithresh, n_norms__;
- real rthresh;
- extern real sla_porcond_(char *, integer *, real *, integer *, real *,
- integer *, integer *, real *, integer *, real *, integer *);
- real cwise_wrong__;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ================================================================== */
-
-
- /* Check the input parameters. */
-
- /* Parameter adjustments */
- err_bnds_comp_dim1 = *nrhs;
- err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
- err_bnds_comp__ -= err_bnds_comp_offset;
- err_bnds_norm_dim1 = *nrhs;
- err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
- err_bnds_norm__ -= err_bnds_norm_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1 * 1;
- af -= af_offset;
- --s;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- --berr;
- --params;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- ref_type__ = 1;
- if (*nparams >= 1) {
- if (params[1] < 0.f) {
- params[1] = 1.f;
- } else {
- ref_type__ = params[1];
- }
- }
-
- /* Set default parameters. */
-
- illrcond_thresh__ = (real) (*n) * slamch_("Epsilon");
- ithresh = 10;
- rthresh = .5f;
- unstable_thresh__ = .25f;
- ignore_cwise__ = FALSE_;
-
- if (*nparams >= 2) {
- if (params[2] < 0.f) {
- params[2] = (real) ithresh;
- } else {
- ithresh = (integer) params[2];
- }
- }
- if (*nparams >= 3) {
- if (params[3] < 0.f) {
- if (ignore_cwise__) {
- params[3] = 0.f;
- } else {
- params[3] = 1.f;
- }
- } else {
- ignore_cwise__ = params[3] == 0.f;
- }
- }
- if (ref_type__ == 0 || *n_err_bnds__ == 0) {
- n_norms__ = 0;
- } else if (ignore_cwise__) {
- n_norms__ = 1;
- } else {
- n_norms__ = 2;
- }
-
- rcequ = lsame_(equed, "Y");
-
- /* Test input parameters. */
-
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (! rcequ && ! lsame_(equed, "N")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldaf < f2cmax(1,*n)) {
- *info = -8;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -11;
- } else if (*ldx < f2cmax(1,*n)) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SPORFSX", &i__1, (ftnlen)7);
- return;
- }
-
- /* Quick return if possible. */
-
- if (*n == 0 || *nrhs == 0) {
- *rcond = 1.f;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- berr[j] = 0.f;
- if (*n_err_bnds__ >= 1) {
- err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
- err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
- }
- if (*n_err_bnds__ >= 2) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.f;
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.f;
- }
- if (*n_err_bnds__ >= 3) {
- err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.f;
- err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.f;
- }
- }
- return;
- }
-
- /* Default to failure. */
-
- *rcond = 0.f;
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- berr[j] = 1.f;
- if (*n_err_bnds__ >= 1) {
- err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
- err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
- }
- if (*n_err_bnds__ >= 2) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
- }
- if (*n_err_bnds__ >= 3) {
- err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.f;
- err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.f;
- }
- }
-
- /* Compute the norm of A and the reciprocal of the condition */
- /* number of A. */
-
- *(unsigned char *)norm = 'I';
- anorm = slansy_(norm, uplo, n, &a[a_offset], lda, &work[1]);
- spocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1],
- info);
-
- /* Perform refinement on each right-hand side */
-
- if (ref_type__ != 0) {
- prec_type__ = ilaprec_("D");
- sla_porfsx_extended_(&prec_type__, uplo, n, nrhs, &a[a_offset], lda,
- &af[af_offset], ldaf, &rcequ, &s[1], &b[b_offset], ldb, &x[
- x_offset], ldx, &berr[1], &n_norms__, &err_bnds_norm__[
- err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset],
- &work[*n + 1], &work[1], &work[(*n << 1) + 1], &work[1],
- rcond, &ithresh, &rthresh, &unstable_thresh__, &
- ignore_cwise__, info);
- }
- /* Computing MAX */
- r__1 = 10.f, r__2 = sqrt((real) (*n));
- err_lbnd__ = f2cmax(r__1,r__2) * slamch_("Epsilon");
- if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
-
- /* Compute scaled normwise condition number cond(A*C). */
-
- if (rcequ) {
- rcond_tmp__ = sla_porcond_(uplo, n, &a[a_offset], lda, &af[
- af_offset], ldaf, &c_n1, &s[1], info, &work[1], &iwork[1]);
- } else {
- rcond_tmp__ = sla_porcond_(uplo, n, &a[a_offset], lda, &af[
- af_offset], ldaf, &c__0, &s[1], info, &work[1], &iwork[1]);
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
-
- /* Cap the error at 1.0. */
-
- if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1
- << 1)] > 1.f) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
- }
-
- /* Threshold the error (see LAWN). */
-
- if (rcond_tmp__ < illrcond_thresh__) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
- err_bnds_norm__[j + err_bnds_norm_dim1] = 0.f;
- if (*info <= *n) {
- *info = *n + j;
- }
- } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] <
- err_lbnd__) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
- err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
- }
-
- /* Save the condition number. */
-
- if (*n_err_bnds__ >= 3) {
- err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
- }
- }
- }
- if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
-
- /* Compute componentwise condition number cond(A*diag(Y(:,J))) for */
- /* each right-hand side using the current solution as an estimate of */
- /* the true solution. If the componentwise error estimate is too */
- /* large, then the solution is a lousy estimate of truth and the */
- /* estimated RCOND may be too optimistic. To avoid misleading users, */
- /* the inverse condition number is set to 0.0 when the estimated */
- /* cwise error is at least CWISE_WRONG. */
-
- cwise_wrong__ = sqrt(slamch_("Epsilon"));
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
- cwise_wrong__) {
- rcond_tmp__ = sla_porcond_(uplo, n, &a[a_offset], lda, &af[
- af_offset], ldaf, &c__1, &x[j * x_dim1 + 1], info, &
- work[1], &iwork[1]);
- } else {
- rcond_tmp__ = 0.f;
- }
-
- /* Cap the error at 1.0. */
-
- if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1
- << 1)] > 1.f) {
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
- }
-
- /* Threshold the error (see LAWN). */
-
- if (rcond_tmp__ < illrcond_thresh__) {
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
- err_bnds_comp__[j + err_bnds_comp_dim1] = 0.f;
- if (params[3] == 1.f && *info < *n + j) {
- *info = *n + j;
- }
- } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
- err_lbnd__) {
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
- err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
- }
-
- /* Save the condition number. */
-
- if (*n_err_bnds__ >= 3) {
- err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
- }
- }
- }
-
- return;
-
- /* End of SPORFSX */
-
- } /* sporfsx_ */
|