|
- *> \brief \b SPBRFS
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SPBRFS + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbrfs.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbrfs.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbrfs.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
- * LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
- * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SPBRFS improves the computed solution to a system of linear
- *> equations when the coefficient matrix is symmetric positive definite
- *> and banded, and provides error bounds and backward error estimates
- *> for the solution.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is REAL array, dimension (LDAB,N)
- *> The upper or lower triangle of the symmetric band matrix A,
- *> stored in the first KD+1 rows of the array. The j-th column
- *> of A is stored in the j-th column of the array AB as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[in] AFB
- *> \verbatim
- *> AFB is REAL array, dimension (LDAFB,N)
- *> The triangular factor U or L from the Cholesky factorization
- *> A = U**T*U or A = L*L**T of the band matrix A as computed by
- *> SPBTRF, in the same storage format as A (see AB).
- *> \endverbatim
- *>
- *> \param[in] LDAFB
- *> \verbatim
- *> LDAFB is INTEGER
- *> The leading dimension of the array AFB. LDAFB >= KD+1.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,NRHS)
- *> The right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is REAL array, dimension (LDX,NRHS)
- *> On entry, the solution matrix X, as computed by SPBTRS.
- *> On exit, the improved solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is REAL array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is REAL array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> ITMAX is the maximum number of steps of iterative refinement.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
- $ LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
- $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER ITMAX
- PARAMETER ( ITMAX = 5 )
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- REAL TWO
- PARAMETER ( TWO = 2.0E+0 )
- REAL THREE
- PARAMETER ( THREE = 3.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER COUNT, I, J, K, KASE, L, NZ
- REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SCOPY, SLACN2, SPBTRS, SSBMV, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SLAMCH
- EXTERNAL LSAME, SLAMCH
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -6
- ELSE IF( LDAFB.LT.KD+1 ) THEN
- INFO = -8
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -10
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -12
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SPBRFS', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
- DO 10 J = 1, NRHS
- FERR( J ) = ZERO
- BERR( J ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- * NZ = maximum number of nonzero elements in each row of A, plus 1
- *
- NZ = MIN( N+1, 2*KD+2 )
- EPS = SLAMCH( 'Epsilon' )
- SAFMIN = SLAMCH( 'Safe minimum' )
- SAFE1 = NZ*SAFMIN
- SAFE2 = SAFE1 / EPS
- *
- * Do for each right hand side
- *
- DO 140 J = 1, NRHS
- *
- COUNT = 1
- LSTRES = THREE
- 20 CONTINUE
- *
- * Loop until stopping criterion is satisfied.
- *
- * Compute residual R = B - A * X
- *
- CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
- CALL SSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
- $ WORK( N+1 ), 1 )
- *
- * Compute componentwise relative backward error from formula
- *
- * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
- *
- * where abs(Z) is the componentwise absolute value of the matrix
- * or vector Z. If the i-th component of the denominator is less
- * than SAFE2, then SAFE1 is added to the i-th components of the
- * numerator and denominator before dividing.
- *
- DO 30 I = 1, N
- WORK( I ) = ABS( B( I, J ) )
- 30 CONTINUE
- *
- * Compute abs(A)*abs(X) + abs(B).
- *
- IF( UPPER ) THEN
- DO 50 K = 1, N
- S = ZERO
- XK = ABS( X( K, J ) )
- L = KD + 1 - K
- DO 40 I = MAX( 1, K-KD ), K - 1
- WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
- S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
- 40 CONTINUE
- WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
- 50 CONTINUE
- ELSE
- DO 70 K = 1, N
- S = ZERO
- XK = ABS( X( K, J ) )
- WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
- L = 1 - K
- DO 60 I = K + 1, MIN( N, K+KD )
- WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
- S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
- 60 CONTINUE
- WORK( K ) = WORK( K ) + S
- 70 CONTINUE
- END IF
- S = ZERO
- DO 80 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
- ELSE
- S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
- $ ( WORK( I )+SAFE1 ) )
- END IF
- 80 CONTINUE
- BERR( J ) = S
- *
- * Test stopping criterion. Continue iterating if
- * 1) The residual BERR(J) is larger than machine epsilon, and
- * 2) BERR(J) decreased by at least a factor of 2 during the
- * last iteration, and
- * 3) At most ITMAX iterations tried.
- *
- IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
- $ COUNT.LE.ITMAX ) THEN
- *
- * Update solution and try again.
- *
- CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
- $ INFO )
- CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
- LSTRES = BERR( J )
- COUNT = COUNT + 1
- GO TO 20
- END IF
- *
- * Bound error from formula
- *
- * norm(X - XTRUE) / norm(X) .le. FERR =
- * norm( abs(inv(A))*
- * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
- *
- * where
- * norm(Z) is the magnitude of the largest component of Z
- * inv(A) is the inverse of A
- * abs(Z) is the componentwise absolute value of the matrix or
- * vector Z
- * NZ is the maximum number of nonzeros in any row of A, plus 1
- * EPS is machine epsilon
- *
- * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
- * is incremented by SAFE1 if the i-th component of
- * abs(A)*abs(X) + abs(B) is less than SAFE2.
- *
- * Use SLACN2 to estimate the infinity-norm of the matrix
- * inv(A) * diag(W),
- * where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
- *
- DO 90 I = 1, N
- IF( WORK( I ).GT.SAFE2 ) THEN
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
- ELSE
- WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
- END IF
- 90 CONTINUE
- *
- KASE = 0
- 100 CONTINUE
- CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
- $ KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.1 ) THEN
- *
- * Multiply by diag(W)*inv(A**T).
- *
- CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
- $ INFO )
- DO 110 I = 1, N
- WORK( N+I ) = WORK( N+I )*WORK( I )
- 110 CONTINUE
- ELSE IF( KASE.EQ.2 ) THEN
- *
- * Multiply by inv(A)*diag(W).
- *
- DO 120 I = 1, N
- WORK( N+I ) = WORK( N+I )*WORK( I )
- 120 CONTINUE
- CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
- $ INFO )
- END IF
- GO TO 100
- END IF
- *
- * Normalize error.
- *
- LSTRES = ZERO
- DO 130 I = 1, N
- LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
- 130 CONTINUE
- IF( LSTRES.NE.ZERO )
- $ FERR( J ) = FERR( J ) / LSTRES
- *
- 140 CONTINUE
- *
- RETURN
- *
- * End of SPBRFS
- *
- END
|