|
- *> \brief \b SORM22 multiplies a general matrix by a banded orthogonal matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SORM22 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorm22.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorm22.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorm22.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
- * $ WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
- * ..
- * .. Array Arguments ..
- * REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
- * ..
- *
- *> \par Purpose
- * ============
- *>
- *> \verbatim
- *>
- *>
- *> SORM22 overwrites the general real M-by-N matrix C with
- *>
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q * C C * Q
- *> TRANS = 'T': Q**T * C C * Q**T
- *>
- *> where Q is a real orthogonal matrix of order NQ, with NQ = M if
- *> SIDE = 'L' and NQ = N if SIDE = 'R'.
- *> The orthogonal matrix Q processes a 2-by-2 block structure
- *>
- *> [ Q11 Q12 ]
- *> Q = [ ]
- *> [ Q21 Q22 ],
- *>
- *> where Q12 is an N1-by-N1 lower triangular matrix and Q21 is an
- *> N2-by-N2 upper triangular matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**T from the Left;
- *> = 'R': apply Q or Q**T from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': apply Q (No transpose);
- *> = 'C': apply Q**T (Conjugate transpose).
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix C. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] N1
- *> \param[in] N2
- *> \verbatim
- *> N1 is INTEGER
- *> N2 is INTEGER
- *> The dimension of Q12 and Q21, respectively. N1, N2 >= 0.
- *> The following requirement must be satisfied:
- *> N1 + N2 = M if SIDE = 'L' and N1 + N2 = N if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is REAL array, dimension
- *> (LDQ,M) if SIDE = 'L'
- *> (LDQ,N) if SIDE = 'R'
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q.
- *> LDQ >= max(1,M) if SIDE = 'L'; LDQ >= max(1,N) if SIDE = 'R'.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is REAL array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If SIDE = 'L', LWORK >= max(1,N);
- *> if SIDE = 'R', LWORK >= max(1,M).
- *> For optimum performance LWORK >= M*N.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup complexOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SORM22( SIDE, TRANS, M, N, N1, N2, Q, LDQ, C, LDC,
- $ WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER M, N, N1, N2, LDQ, LDC, LWORK, INFO
- * ..
- * .. Array Arguments ..
- REAL Q( LDQ, * ), C( LDC, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE
- PARAMETER ( ONE = 1.0E+0 )
- *
- * .. Local Scalars ..
- LOGICAL LEFT, LQUERY, NOTRAN
- INTEGER I, LDWORK, LEN, LWKOPT, NB, NQ, NW
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SLACPY, STRMM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC REAL, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LEFT = LSAME( SIDE, 'L' )
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- * NQ is the order of Q;
- * NW is the minimum dimension of WORK.
- *
- IF( LEFT ) THEN
- NQ = M
- ELSE
- NQ = N
- END IF
- NW = NQ
- IF( N1.EQ.0 .OR. N2.EQ.0 ) NW = 1
- IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
- $ THEN
- INFO = -2
- ELSE IF( M.LT.0 ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( N1.LT.0 .OR. N1+N2.NE.NQ ) THEN
- INFO = -5
- ELSE IF( N2.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDQ.LT.MAX( 1, NQ ) ) THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- LWKOPT = M*N
- WORK( 1 ) = REAL( LWKOPT )
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SORM22', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- * Degenerate cases (N1 = 0 or N2 = 0) are handled using STRMM.
- *
- IF( N1.EQ.0 ) THEN
- CALL STRMM( SIDE, 'Upper', TRANS, 'Non-Unit', M, N, ONE,
- $ Q, LDQ, C, LDC )
- WORK( 1 ) = ONE
- RETURN
- ELSE IF( N2.EQ.0 ) THEN
- CALL STRMM( SIDE, 'Lower', TRANS, 'Non-Unit', M, N, ONE,
- $ Q, LDQ, C, LDC )
- WORK( 1 ) = ONE
- RETURN
- END IF
- *
- * Compute the largest chunk size available from the workspace.
- *
- NB = MAX( 1, MIN( LWORK, LWKOPT ) / NQ )
- *
- IF( LEFT ) THEN
- IF( NOTRAN ) THEN
- DO I = 1, N, NB
- LEN = MIN( NB, N-I+1 )
- LDWORK = M
- *
- * Multiply bottom part of C by Q12.
- *
- CALL SLACPY( 'All', N1, LEN, C( N2+1, I ), LDC, WORK,
- $ LDWORK )
- CALL STRMM( 'Left', 'Lower', 'No Transpose', 'Non-Unit',
- $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ, WORK,
- $ LDWORK )
- *
- * Multiply top part of C by Q11.
- *
- CALL SGEMM( 'No Transpose', 'No Transpose', N1, LEN, N2,
- $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
- $ LDWORK )
- *
- * Multiply top part of C by Q21.
- *
- CALL SLACPY( 'All', N2, LEN, C( 1, I ), LDC,
- $ WORK( N1+1 ), LDWORK )
- CALL STRMM( 'Left', 'Upper', 'No Transpose', 'Non-Unit',
- $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ,
- $ WORK( N1+1 ), LDWORK )
- *
- * Multiply bottom part of C by Q22.
- *
- CALL SGEMM( 'No Transpose', 'No Transpose', N2, LEN, N1,
- $ ONE, Q( N1+1, N2+1 ), LDQ, C( N2+1, I ), LDC,
- $ ONE, WORK( N1+1 ), LDWORK )
- *
- * Copy everything back.
- *
- CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
- $ LDC )
- END DO
- ELSE
- DO I = 1, N, NB
- LEN = MIN( NB, N-I+1 )
- LDWORK = M
- *
- * Multiply bottom part of C by Q21**T.
- *
- CALL SLACPY( 'All', N2, LEN, C( N1+1, I ), LDC, WORK,
- $ LDWORK )
- CALL STRMM( 'Left', 'Upper', 'Transpose', 'Non-Unit',
- $ N2, LEN, ONE, Q( N1+1, 1 ), LDQ, WORK,
- $ LDWORK )
- *
- * Multiply top part of C by Q11**T.
- *
- CALL SGEMM( 'Transpose', 'No Transpose', N2, LEN, N1,
- $ ONE, Q, LDQ, C( 1, I ), LDC, ONE, WORK,
- $ LDWORK )
- *
- * Multiply top part of C by Q12**T.
- *
- CALL SLACPY( 'All', N1, LEN, C( 1, I ), LDC,
- $ WORK( N2+1 ), LDWORK )
- CALL STRMM( 'Left', 'Lower', 'Transpose', 'Non-Unit',
- $ N1, LEN, ONE, Q( 1, N2+1 ), LDQ,
- $ WORK( N2+1 ), LDWORK )
- *
- * Multiply bottom part of C by Q22**T.
- *
- CALL SGEMM( 'Transpose', 'No Transpose', N1, LEN, N2,
- $ ONE, Q( N1+1, N2+1 ), LDQ, C( N1+1, I ), LDC,
- $ ONE, WORK( N2+1 ), LDWORK )
- *
- * Copy everything back.
- *
- CALL SLACPY( 'All', M, LEN, WORK, LDWORK, C( 1, I ),
- $ LDC )
- END DO
- END IF
- ELSE
- IF( NOTRAN ) THEN
- DO I = 1, M, NB
- LEN = MIN( NB, M-I+1 )
- LDWORK = LEN
- *
- * Multiply right part of C by Q21.
- *
- CALL SLACPY( 'All', LEN, N2, C( I, N1+1 ), LDC, WORK,
- $ LDWORK )
- CALL STRMM( 'Right', 'Upper', 'No Transpose', 'Non-Unit',
- $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ, WORK,
- $ LDWORK )
- *
- * Multiply left part of C by Q11.
- *
- CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N2, N1,
- $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
- $ LDWORK )
- *
- * Multiply left part of C by Q12.
- *
- CALL SLACPY( 'All', LEN, N1, C( I, 1 ), LDC,
- $ WORK( 1 + N2*LDWORK ), LDWORK )
- CALL STRMM( 'Right', 'Lower', 'No Transpose', 'Non-Unit',
- $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ,
- $ WORK( 1 + N2*LDWORK ), LDWORK )
- *
- * Multiply right part of C by Q22.
- *
- CALL SGEMM( 'No Transpose', 'No Transpose', LEN, N1, N2,
- $ ONE, C( I, N1+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
- $ ONE, WORK( 1 + N2*LDWORK ), LDWORK )
- *
- * Copy everything back.
- *
- CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
- $ LDC )
- END DO
- ELSE
- DO I = 1, M, NB
- LEN = MIN( NB, M-I+1 )
- LDWORK = LEN
- *
- * Multiply right part of C by Q12**T.
- *
- CALL SLACPY( 'All', LEN, N1, C( I, N2+1 ), LDC, WORK,
- $ LDWORK )
- CALL STRMM( 'Right', 'Lower', 'Transpose', 'Non-Unit',
- $ LEN, N1, ONE, Q( 1, N2+1 ), LDQ, WORK,
- $ LDWORK )
- *
- * Multiply left part of C by Q11**T.
- *
- CALL SGEMM( 'No Transpose', 'Transpose', LEN, N1, N2,
- $ ONE, C( I, 1 ), LDC, Q, LDQ, ONE, WORK,
- $ LDWORK )
- *
- * Multiply left part of C by Q21**T.
- *
- CALL SLACPY( 'All', LEN, N2, C( I, 1 ), LDC,
- $ WORK( 1 + N1*LDWORK ), LDWORK )
- CALL STRMM( 'Right', 'Upper', 'Transpose', 'Non-Unit',
- $ LEN, N2, ONE, Q( N1+1, 1 ), LDQ,
- $ WORK( 1 + N1*LDWORK ), LDWORK )
- *
- * Multiply right part of C by Q22**T.
- *
- CALL SGEMM( 'No Transpose', 'Transpose', LEN, N2, N1,
- $ ONE, C( I, N2+1 ), LDC, Q( N1+1, N2+1 ), LDQ,
- $ ONE, WORK( 1 + N1*LDWORK ), LDWORK )
- *
- * Copy everything back.
- *
- CALL SLACPY( 'All', LEN, N, WORK, LDWORK, C( I, 1 ),
- $ LDC )
- END DO
- END IF
- END IF
- *
- WORK( 1 ) = REAL( LWKOPT )
- RETURN
- *
- * End of SORM22
- *
- END
|