|
- *> \brief \b SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SORG2L + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorg2l.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorg2l.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorg2l.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDA, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SORG2L generates an m by n real matrix Q with orthonormal columns,
- *> which is defined as the last n columns of a product of k elementary
- *> reflectors of order m
- *>
- *> Q = H(k) . . . H(2) H(1)
- *>
- *> as returned by SGEQLF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q. M >= N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> matrix Q. N >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the (n-k+i)-th column must contain the vector which
- *> defines the elementary reflector H(i), for i = 1,2,...,k, as
- *> returned by SGEQLF in the last k columns of its array
- *> argument A.
- *> On exit, the m by n matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The first dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by SGEQLF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument has an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDA, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, II, J, L
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARF, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
- INFO = -2
- ELSE IF( K.LT.0 .OR. K.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SORG2L', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.LE.0 )
- $ RETURN
- *
- * Initialise columns 1:n-k to columns of the unit matrix
- *
- DO 20 J = 1, N - K
- DO 10 L = 1, M
- A( L, J ) = ZERO
- 10 CONTINUE
- A( M-N+J, J ) = ONE
- 20 CONTINUE
- *
- DO 40 I = 1, K
- II = N - K + I
- *
- * Apply H(i) to A(1:m-k+i,1:n-k+i) from the left
- *
- A( M-N+II, II ) = ONE
- CALL SLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A,
- $ LDA, WORK )
- CALL SSCAL( M-N+II-1, -TAU( I ), A( 1, II ), 1 )
- A( M-N+II, II ) = ONE - TAU( I )
- *
- * Set A(m-k+i+1:m,n-k+i) to zero
- *
- DO 30 L = M - N + II + 1, M
- A( L, II ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- RETURN
- *
- * End of SORG2L
- *
- END
|