|
- *> \brief \b SORBDB6
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SORBDB6 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb6.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb6.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb6.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
- * LDQ2, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
- * $ N
- * ..
- * .. Array Arguments ..
- * REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *>\verbatim
- *>
- *> SORBDB6 orthogonalizes the column vector
- *> X = [ X1 ]
- *> [ X2 ]
- *> with respect to the columns of
- *> Q = [ Q1 ] .
- *> [ Q2 ]
- *> The Euclidean norm of X must be one and the columns of Q must be
- *> orthonormal. The orthogonalized vector will be zero if and only if it
- *> lies entirely in the range of Q.
- *>
- *> The projection is computed with at most two iterations of the
- *> classical Gram-Schmidt algorithm, see
- *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
- *> analysis of the Gram-Schmidt algorithm with reorthogonalization."
- *> 2002. CERFACS Technical Report No. TR/PA/02/33. URL:
- *> https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
- *>
- *>\endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M1
- *> \verbatim
- *> M1 is INTEGER
- *> The dimension of X1 and the number of rows in Q1. 0 <= M1.
- *> \endverbatim
- *>
- *> \param[in] M2
- *> \verbatim
- *> M2 is INTEGER
- *> The dimension of X2 and the number of rows in Q2. 0 <= M2.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns in Q1 and Q2. 0 <= N.
- *> \endverbatim
- *>
- *> \param[in,out] X1
- *> \verbatim
- *> X1 is REAL array, dimension (M1)
- *> On entry, the top part of the vector to be orthogonalized.
- *> On exit, the top part of the projected vector.
- *> \endverbatim
- *>
- *> \param[in] INCX1
- *> \verbatim
- *> INCX1 is INTEGER
- *> Increment for entries of X1.
- *> \endverbatim
- *>
- *> \param[in,out] X2
- *> \verbatim
- *> X2 is REAL array, dimension (M2)
- *> On entry, the bottom part of the vector to be
- *> orthogonalized. On exit, the bottom part of the projected
- *> vector.
- *> \endverbatim
- *>
- *> \param[in] INCX2
- *> \verbatim
- *> INCX2 is INTEGER
- *> Increment for entries of X2.
- *> \endverbatim
- *>
- *> \param[in] Q1
- *> \verbatim
- *> Q1 is REAL array, dimension (LDQ1, N)
- *> The top part of the orthonormal basis matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ1
- *> \verbatim
- *> LDQ1 is INTEGER
- *> The leading dimension of Q1. LDQ1 >= M1.
- *> \endverbatim
- *>
- *> \param[in] Q2
- *> \verbatim
- *> Q2 is REAL array, dimension (LDQ2, N)
- *> The bottom part of the orthonormal basis matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ2
- *> \verbatim
- *> LDQ2 is INTEGER
- *> The leading dimension of Q2. LDQ2 >= M2.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (LWORK)
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= N.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
- $ LDQ2, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
- $ N
- * ..
- * .. Array Arguments ..
- REAL Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ALPHA, REALONE, REALZERO
- PARAMETER ( ALPHA = 0.01E0, REALONE = 1.0E0,
- $ REALZERO = 0.0E0 )
- REAL NEGONE, ONE, ZERO
- PARAMETER ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IX
- REAL EPS, NORM, NORM_NEW, SCL, SSQ
- * ..
- * .. External Functions ..
- REAL SLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMV, SLASSQ, XERBLA
- * ..
- * .. Intrinsic Function ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- IF( M1 .LT. 0 ) THEN
- INFO = -1
- ELSE IF( M2 .LT. 0 ) THEN
- INFO = -2
- ELSE IF( N .LT. 0 ) THEN
- INFO = -3
- ELSE IF( INCX1 .LT. 1 ) THEN
- INFO = -5
- ELSE IF( INCX2 .LT. 1 ) THEN
- INFO = -7
- ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
- INFO = -9
- ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
- INFO = -11
- ELSE IF( LWORK .LT. N ) THEN
- INFO = -13
- END IF
- *
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'SORBDB6', -INFO )
- RETURN
- END IF
- *
- EPS = SLAMCH( 'Precision' )
- *
- * First, project X onto the orthogonal complement of Q's column
- * space
- *
- * Christoph Conrads: In debugging mode the norm should be computed
- * and an assertion added comparing the norm with one. Alas, Fortran
- * never made it into 1989 when assert() was introduced into the C
- * programming language.
- NORM = REALONE
- *
- IF( M1 .EQ. 0 ) THEN
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- ELSE
- CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
- $ 1 )
- END IF
- *
- CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
- *
- CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
- $ INCX1 )
- CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
- $ INCX2 )
- *
- SCL = REALZERO
- SSQ = REALZERO
- CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
- CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
- NORM_NEW = SCL * SQRT(SSQ)
- *
- * If projection is sufficiently large in norm, then stop.
- * If projection is zero, then stop.
- * Otherwise, project again.
- *
- IF( NORM_NEW .GE. ALPHA * NORM ) THEN
- RETURN
- END IF
- *
- IF( NORM_NEW .LE. N * EPS * NORM ) THEN
- DO IX = 1, 1 + (M1-1)*INCX1, INCX1
- X1( IX ) = ZERO
- END DO
- DO IX = 1, 1 + (M2-1)*INCX2, INCX2
- X2( IX ) = ZERO
- END DO
- RETURN
- END IF
- *
- NORM = NORM_NEW
- *
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- *
- IF( M1 .EQ. 0 ) THEN
- DO I = 1, N
- WORK(I) = ZERO
- END DO
- ELSE
- CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
- $ 1 )
- END IF
- *
- CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
- *
- CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
- $ INCX1 )
- CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
- $ INCX2 )
- *
- SCL = REALZERO
- SSQ = REALZERO
- CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
- CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
- NORM_NEW = SCL * SQRT(SSQ)
- *
- * If second projection is sufficiently large in norm, then do
- * nothing more. Alternatively, if it shrunk significantly, then
- * truncate it to zero.
- *
- IF( NORM_NEW .LT. ALPHA * NORM ) THEN
- DO IX = 1, 1 + (M1-1)*INCX1, INCX1
- X1(IX) = ZERO
- END DO
- DO IX = 1, 1 + (M2-1)*INCX2, INCX2
- X2(IX) = ZERO
- END DO
- END IF
- *
- RETURN
- *
- * End of SORBDB6
- *
- END
|