|
- *> \brief \b SLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLATRZ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatrz.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatrz.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatrz.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLATRZ( M, N, L, A, LDA, TAU, WORK )
- *
- * .. Scalar Arguments ..
- * INTEGER L, LDA, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLATRZ factors the M-by-(M+L) real upper trapezoidal matrix
- *> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means
- *> of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal
- *> matrix and, R and A1 are M-by-M upper triangular matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of columns of the matrix A containing the
- *> meaningful part of the Householder vectors. N-M >= L >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the leading M-by-N upper trapezoidal part of the
- *> array A must contain the matrix to be factorized.
- *> On exit, the leading M-by-M upper triangular part of A
- *> contains the upper triangular matrix R, and elements N-L+1 to
- *> N of the first M rows of A, with the array TAU, represent the
- *> orthogonal matrix Z as a product of M elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (M)
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (M)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The factorization is obtained by Householder's method. The kth
- *> transformation matrix, Z( k ), which is used to introduce zeros into
- *> the ( m - k + 1 )th row of A, is given in the form
- *>
- *> Z( k ) = ( I 0 ),
- *> ( 0 T( k ) )
- *>
- *> where
- *>
- *> T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ),
- *> ( 0 )
- *> ( z( k ) )
- *>
- *> tau is a scalar and z( k ) is an l element vector. tau and z( k )
- *> are chosen to annihilate the elements of the kth row of A2.
- *>
- *> The scalar tau is returned in the kth element of TAU and the vector
- *> u( k ) in the kth row of A2, such that the elements of z( k ) are
- *> in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
- *> the upper triangular part of A1.
- *>
- *> Z is given by
- *>
- *> Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SLATRZ( M, N, L, A, LDA, TAU, WORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER L, LDA, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARFG, SLARZ
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- * Quick return if possible
- *
- IF( M.EQ.0 ) THEN
- RETURN
- ELSE IF( M.EQ.N ) THEN
- DO 10 I = 1, N
- TAU( I ) = ZERO
- 10 CONTINUE
- RETURN
- END IF
- *
- DO 20 I = M, 1, -1
- *
- * Generate elementary reflector H(i) to annihilate
- * [ A(i,i) A(i,n-l+1:n) ]
- *
- CALL SLARFG( L+1, A( I, I ), A( I, N-L+1 ), LDA, TAU( I ) )
- *
- * Apply H(i) to A(1:i-1,i:n) from the right
- *
- CALL SLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
- $ TAU( I ), A( 1, I ), LDA, WORK )
- *
- 20 CONTINUE
- *
- RETURN
- *
- * End of SLATRZ
- *
- END
|