|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries
- to deflate the size of the problem. Used by sbdsdc. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLASD7 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */
- /* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */
- /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
- /* C, S, INFO ) */
-
- /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
- /* $ NR, SQRE */
- /* REAL ALPHA, BETA, C, S */
- /* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */
- /* $ IDXQ( * ), PERM( * ) */
- /* REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */
- /* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */
- /* $ ZW( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLASD7 merges the two sets of singular values together into a single */
- /* > sorted set. Then it tries to deflate the size of the problem. There */
- /* > are two ways in which deflation can occur: when two or more singular */
- /* > values are close together or if there is a tiny entry in the Z */
- /* > vector. For each such occurrence the order of the related */
- /* > secular equation problem is reduced by one. */
- /* > */
- /* > SLASD7 is called from SLASD6. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] ICOMPQ */
- /* > \verbatim */
- /* > ICOMPQ is INTEGER */
- /* > Specifies whether singular vectors are to be computed */
- /* > in compact form, as follows: */
- /* > = 0: Compute singular values only. */
- /* > = 1: Compute singular vectors of upper */
- /* > bidiagonal matrix in compact form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NL */
- /* > \verbatim */
- /* > NL is INTEGER */
- /* > The row dimension of the upper block. NL >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NR */
- /* > \verbatim */
- /* > NR is INTEGER */
- /* > The row dimension of the lower block. NR >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SQRE */
- /* > \verbatim */
- /* > SQRE is INTEGER */
- /* > = 0: the lower block is an NR-by-NR square matrix. */
- /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* > */
- /* > The bidiagonal matrix has */
- /* > N = NL + NR + 1 rows and */
- /* > M = N + SQRE >= N columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > Contains the dimension of the non-deflated matrix, this is */
- /* > the order of the related secular equation. 1 <= K <=N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension ( N ) */
- /* > On entry D contains the singular values of the two submatrices */
- /* > to be combined. On exit D contains the trailing (N-K) updated */
- /* > singular values (those which were deflated) sorted into */
- /* > increasing order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension ( M ) */
- /* > On exit Z contains the updating row vector in the secular */
- /* > equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ZW */
- /* > \verbatim */
- /* > ZW is REAL array, dimension ( M ) */
- /* > Workspace for Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VF */
- /* > \verbatim */
- /* > VF is REAL array, dimension ( M ) */
- /* > On entry, VF(1:NL+1) contains the first components of all */
- /* > right singular vectors of the upper block; and VF(NL+2:M) */
- /* > contains the first components of all right singular vectors */
- /* > of the lower block. On exit, VF contains the first components */
- /* > of all right singular vectors of the bidiagonal matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VFW */
- /* > \verbatim */
- /* > VFW is REAL array, dimension ( M ) */
- /* > Workspace for VF. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension ( M ) */
- /* > On entry, VL(1:NL+1) contains the last components of all */
- /* > right singular vectors of the upper block; and VL(NL+2:M) */
- /* > contains the last components of all right singular vectors */
- /* > of the lower block. On exit, VL contains the last components */
- /* > of all right singular vectors of the bidiagonal matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VLW */
- /* > \verbatim */
- /* > VLW is REAL array, dimension ( M ) */
- /* > Workspace for VL. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is REAL */
- /* > Contains the diagonal element associated with the added row. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BETA */
- /* > \verbatim */
- /* > BETA is REAL */
- /* > Contains the off-diagonal element associated with the added */
- /* > row. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DSIGMA */
- /* > \verbatim */
- /* > DSIGMA is REAL array, dimension ( N ) */
- /* > Contains a copy of the diagonal elements (K-1 singular values */
- /* > and one zero) in the secular equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IDX */
- /* > \verbatim */
- /* > IDX is INTEGER array, dimension ( N ) */
- /* > This will contain the permutation used to sort the contents of */
- /* > D into ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IDXP */
- /* > \verbatim */
- /* > IDXP is INTEGER array, dimension ( N ) */
- /* > This will contain the permutation used to place deflated */
- /* > values of D at the end of the array. On output IDXP(2:K) */
- /* > points to the nondeflated D-values and IDXP(K+1:N) */
- /* > points to the deflated singular values. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IDXQ */
- /* > \verbatim */
- /* > IDXQ is INTEGER array, dimension ( N ) */
- /* > This contains the permutation which separately sorts the two */
- /* > sub-problems in D into ascending order. Note that entries in */
- /* > the first half of this permutation must first be moved one */
- /* > position backward; and entries in the second half */
- /* > must first have NL+1 added to their values. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] PERM */
- /* > \verbatim */
- /* > PERM is INTEGER array, dimension ( N ) */
- /* > The permutations (from deflation and sorting) to be applied */
- /* > to each singular block. Not referenced if ICOMPQ = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] GIVPTR */
- /* > \verbatim */
- /* > GIVPTR is INTEGER */
- /* > The number of Givens rotations which took place in this */
- /* > subproblem. Not referenced if ICOMPQ = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] GIVCOL */
- /* > \verbatim */
- /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
- /* > Each pair of numbers indicates a pair of columns to take place */
- /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDGCOL */
- /* > \verbatim */
- /* > LDGCOL is INTEGER */
- /* > The leading dimension of GIVCOL, must be at least N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] GIVNUM */
- /* > \verbatim */
- /* > GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
- /* > Each number indicates the C or S value to be used in the */
- /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDGNUM */
- /* > \verbatim */
- /* > LDGNUM is INTEGER */
- /* > The leading dimension of GIVNUM, must be at least N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] C */
- /* > \verbatim */
- /* > C is REAL */
- /* > C contains garbage if SQRE =0 and the C-value of a Givens */
- /* > rotation related to the right null space if SQRE = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is REAL */
- /* > S contains garbage if SQRE =0 and the S-value of a Givens */
- /* > rotation related to the right null space if SQRE = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Huan Ren, Computer Science Division, University of */
- /* > California at Berkeley, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slasd7_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf,
- real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma,
- integer *idx, integer *idxp, integer *idxq, integer *perm, integer *
- givptr, integer *givcol, integer *ldgcol, real *givnum, integer *
- ldgnum, real *c__, real *s, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
- real r__1, r__2;
-
- /* Local variables */
- integer idxi, idxj;
- extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
- integer *, real *, real *);
- integer i__, j, m, n, idxjp, jprev, k2;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *);
- real z1;
- extern real slapy2_(real *, real *);
- integer jp;
- extern real slamch_(char *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void slamrg_(
- integer *, integer *, real *, integer *, integer *, integer *);
- real hlftol, eps, tau, tol;
- integer nlp1, nlp2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --z__;
- --zw;
- --vf;
- --vfw;
- --vl;
- --vlw;
- --dsigma;
- --idx;
- --idxp;
- --idxq;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1 * 1;
- givcol -= givcol_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1 * 1;
- givnum -= givnum_offset;
-
- /* Function Body */
- *info = 0;
- n = *nl + *nr + 1;
- m = n + *sqre;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- } else if (*ldgcol < n) {
- *info = -22;
- } else if (*ldgnum < n) {
- *info = -24;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SLASD7", &i__1, (ftnlen)6);
- return;
- }
-
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
- if (*icompq == 1) {
- *givptr = 0;
- }
-
- /* Generate the first part of the vector Z and move the singular */
- /* values in the first part of D one position backward. */
-
- z1 = *alpha * vl[nlp1];
- vl[nlp1] = 0.f;
- tau = vf[nlp1];
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vl[i__];
- vl[i__] = 0.f;
- vf[i__ + 1] = vf[i__];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
- /* L10: */
- }
- vf[1] = tau;
-
- /* Generate the second part of the vector Z. */
-
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vf[i__];
- vf[i__] = 0.f;
- /* L20: */
- }
-
- /* Sort the singular values into increasing order */
-
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
- /* L30: */
- }
-
- /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- zw[i__] = z__[idxq[i__]];
- vfw[i__] = vf[idxq[i__]];
- vlw[i__] = vl[idxq[i__]];
- /* L40: */
- }
-
- slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = zw[idxi];
- vf[i__] = vfw[idxi];
- vl[i__] = vlw[idxi];
- /* L50: */
- }
-
- /* Calculate the allowable deflation tolerance */
-
- eps = slamch_("Epsilon");
- /* Computing MAX */
- r__1 = abs(*alpha), r__2 = abs(*beta);
- tol = f2cmax(r__1,r__2);
- /* Computing MAX */
- r__2 = (r__1 = d__[n], abs(r__1));
- tol = eps * 64.f * f2cmax(r__2,tol);
-
- /* There are 2 kinds of deflation -- first a value in the z-vector */
- /* is small, second two (or more) singular values are very close */
- /* together (their difference is small). */
-
- /* If the value in the z-vector is small, we simply permute the */
- /* array so that the corresponding singular value is moved to the */
- /* end. */
-
- /* If two values in the D-vector are close, we perform a two-sided */
- /* rotation designed to make one of the corresponding z-vector */
- /* entries zero, and then permute the array so that the deflated */
- /* singular value is moved to the end. */
-
- /* If there are multiple singular values then the problem deflates. */
- /* Here the number of equal singular values are found. As each equal */
- /* singular value is found, an elementary reflector is computed to */
- /* rotate the corresponding singular subspace so that the */
- /* corresponding components of Z are zero in this new basis. */
-
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((r__1 = z__[j], abs(r__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- if (j == n) {
- goto L100;
- }
- } else {
- jprev = j;
- goto L70;
- }
- /* L60: */
- }
- L70:
- j = jprev;
- L80:
- ++j;
- if (j > n) {
- goto L90;
- }
- if ((r__1 = z__[j], abs(r__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- } else {
-
- /* Check if singular values are close enough to allow deflation. */
-
- if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
-
- /* Deflation is possible. */
-
- *s = z__[jprev];
- *c__ = z__[j];
-
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
-
- tau = slapy2_(c__, s);
- z__[j] = tau;
- z__[jprev] = 0.f;
- *c__ /= tau;
- *s = -(*s) / tau;
-
- /* Record the appropriate Givens rotation */
-
- if (*icompq == 1) {
- ++(*givptr);
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
- givcol[*givptr + givcol_dim1] = idxj;
- givnum[*givptr + (givnum_dim1 << 1)] = *c__;
- givnum[*givptr + givnum_dim1] = *s;
- }
- srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
- srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L80;
- L90:
-
- /* Record the last singular value. */
-
- ++(*k);
- zw[*k] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
-
- L100:
-
- /* Sort the singular values into DSIGMA. The singular values which */
- /* were not deflated go into the first K slots of DSIGMA, except */
- /* that DSIGMA(1) is treated separately. */
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- vfw[j] = vf[jp];
- vlw[j] = vl[jp];
- /* L110: */
- }
- if (*icompq == 1) {
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- perm[j] = idxq[idx[jp] + 1];
- if (perm[j] <= nlp1) {
- --perm[j];
- }
- /* L120: */
- }
- }
-
- /* The deflated singular values go back into the last N - K slots of */
- /* D. */
-
- i__1 = n - *k;
- scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
-
- /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
- /* VL(M). */
-
- dsigma[1] = 0.f;
- hlftol = tol / 2.f;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = slapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- *c__ = 1.f;
- *s = 0.f;
- z__[1] = tol;
- } else {
- *c__ = z1 / z__[1];
- *s = -z__[m] / z__[1];
- }
- srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
- srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
-
- /* Restore Z, VF, and VL. */
-
- i__1 = *k - 1;
- scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
- i__1 = n - 1;
- scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
- i__1 = n - 1;
- scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
-
- return;
-
- /* End of SLASD7 */
-
- } /* slasd7_ */
|