|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b SLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one
- modification to a positive diagonal matrix. Used by sbdsdc. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLASD4 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd4.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd4.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd4.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO ) */
-
- /* INTEGER I, INFO, N */
- /* REAL RHO, SIGMA */
- /* REAL D( * ), DELTA( * ), WORK( * ), Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This subroutine computes the square root of the I-th updated */
- /* > eigenvalue of a positive symmetric rank-one modification to */
- /* > a positive diagonal matrix whose entries are given as the squares */
- /* > of the corresponding entries in the array d, and that */
- /* > */
- /* > 0 <= D(i) < D(j) for i < j */
- /* > */
- /* > and that RHO > 0. This is arranged by the calling routine, and is */
- /* > no loss in generality. The rank-one modified system is thus */
- /* > */
- /* > diag( D ) * diag( D ) + RHO * Z * Z_transpose. */
- /* > */
- /* > where we assume the Euclidean norm of Z is 1. */
- /* > */
- /* > The method consists of approximating the rational functions in the */
- /* > secular equation by simpler interpolating rational functions. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The length of all arrays. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] I */
- /* > \verbatim */
- /* > I is INTEGER */
- /* > The index of the eigenvalue to be computed. 1 <= I <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is REAL array, dimension ( N ) */
- /* > The original eigenvalues. It is assumed that they are in */
- /* > order, 0 <= D(I) < D(J) for I < J. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension ( N ) */
- /* > The components of the updating vector. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DELTA */
- /* > \verbatim */
- /* > DELTA is REAL array, dimension ( N ) */
- /* > If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th */
- /* > component. If N = 1, then DELTA(1) = 1. The vector DELTA */
- /* > contains the information necessary to construct the */
- /* > (singular) eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RHO */
- /* > \verbatim */
- /* > RHO is REAL */
- /* > The scalar in the symmetric updating formula. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SIGMA */
- /* > \verbatim */
- /* > SIGMA is REAL */
- /* > The computed sigma_I, the I-th updated eigenvalue. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension ( N ) */
- /* > If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th */
- /* > component. If N = 1, then WORK( 1 ) = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > > 0: if INFO = 1, the updating process failed. */
- /* > \endverbatim */
-
- /* > \par Internal Parameters: */
- /* ========================= */
- /* > */
- /* > \verbatim */
- /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */
- /* > whether D(i) or D(i+1) is treated as the origin. */
- /* > */
- /* > ORGATI = .true. origin at i */
- /* > ORGATI = .false. origin at i+1 */
- /* > */
- /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
- /* > if we are working with THREE poles! */
- /* > */
- /* > MAXIT is the maximum number of iterations allowed for each */
- /* > eigenvalue. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ren-Cang Li, Computer Science Division, University of California */
- /* > at Berkeley, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slasd4_(integer *n, integer *i__, real *d__, real *z__,
- real *delta, real *rho, real *sigma, real *work, integer *info)
- {
- /* System generated locals */
- integer i__1;
- real r__1;
-
- /* Local variables */
- real dphi, sglb, dpsi, sgub;
- integer iter;
- real temp, prew, temp1, temp2, a, b, c__;
- integer j;
- real w, dtiim, delsq, dtiip;
- integer niter;
- real dtisq;
- logical swtch;
- real dtnsq;
- extern /* Subroutine */ void slaed6_(integer *, logical *, real *, real *,
- real *, real *, real *, integer *);
- real delsq2;
- extern /* Subroutine */ void slasd5_(integer *, real *, real *, real *,
- real *, real *, real *);
- real dd[3], dtnsq1;
- logical swtch3;
- integer ii;
- real dw;
- extern real slamch_(char *);
- real zz[3];
- logical orgati;
- real erretm, dtipsq, rhoinv;
- integer ip1;
- real sq2, eta, phi, eps, tau, psi;
- logical geomavg;
- integer iim1, iip1;
- real tau2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Since this routine is called in an inner loop, we do no argument */
- /* checking. */
-
- /* Quick return for N=1 and 2. */
-
- /* Parameter adjustments */
- --work;
- --delta;
- --z__;
- --d__;
-
- /* Function Body */
- *info = 0;
- if (*n == 1) {
-
- /* Presumably, I=1 upon entry */
-
- *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
- delta[1] = 1.f;
- work[1] = 1.f;
- return;
- }
- if (*n == 2) {
- slasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
- return;
- }
-
- /* Compute machine epsilon */
-
- eps = slamch_("Epsilon");
- rhoinv = 1.f / *rho;
- tau2 = 0.f;
-
- /* The case I = N */
-
- if (*i__ == *n) {
-
- /* Initialize some basic variables */
-
- ii = *n - 1;
- niter = 1;
-
- /* Calculate initial guess */
-
- temp = *rho / 2.f;
-
- /* If ||Z||_2 is not one, then TEMP should be set to */
- /* RHO * ||Z||_2^2 / TWO */
-
- temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[*n] + temp1;
- delta[j] = d__[j] - d__[*n] - temp1;
- /* L10: */
- }
-
- psi = 0.f;
- i__1 = *n - 2;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / (delta[j] * work[j]);
- /* L20: */
- }
-
- c__ = rhoinv + psi;
- w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
- n] / (delta[*n] * work[*n]);
-
- if (w <= 0.f) {
- temp1 = sqrt(d__[*n] * d__[*n] + *rho);
- temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
- n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] *
- z__[*n] / *rho;
-
- /* The following TAU2 is to approximate */
- /* SIGMA_n^2 - D( N )*D( N ) */
-
- if (c__ <= temp) {
- tau = *rho;
- } else {
- delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
- a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
- n];
- b = z__[*n] * z__[*n] * delsq;
- if (a < 0.f) {
- tau2 = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
- } else {
- tau2 = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
- }
- tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
- }
-
- /* It can be proved that */
- /* D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO */
-
- } else {
- delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
- a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
- b = z__[*n] * z__[*n] * delsq;
-
- /* The following TAU2 is to approximate */
- /* SIGMA_n^2 - D( N )*D( N ) */
-
- if (a < 0.f) {
- tau2 = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
- } else {
- tau2 = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
- }
- tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
-
- /* It can be proved that */
- /* D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2 */
-
- }
-
- /* The following TAU is to approximate SIGMA_n - D( N ) */
-
- /* TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) ) */
-
- *sigma = d__[*n] + tau;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] = d__[j] - d__[*n] - tau;
- work[j] = d__[j] + d__[*n] + tau;
- /* L30: */
- }
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (delta[j] * work[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L40: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- temp = z__[*n] / (delta[*n] * work[*n]);
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
- /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
-
- w = rhoinv + phi + psi;
-
- /* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
- /* Calculate the new step */
-
- ++niter;
- dtnsq1 = work[*n - 1] * delta[*n - 1];
- dtnsq = work[*n] * delta[*n];
- c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
- a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
- b = dtnsq * dtnsq1 * w;
- if (c__ < 0.f) {
- c__ = abs(c__);
- }
- if (c__ == 0.f) {
- eta = *rho - *sigma * *sigma;
- } else if (a >= 0.f) {
- eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) / (
- c__ * 2.f);
- } else {
- eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)
- )));
- }
-
- /* Note, eta should be positive if w is negative, and */
- /* eta should be negative otherwise. However, */
- /* if for some reason caused by roundoff, eta*w > 0, */
- /* we simply use one Newton step instead. This way */
- /* will guarantee eta*w < 0. */
-
- if (w * eta > 0.f) {
- eta = -w / (dpsi + dphi);
- }
- temp = eta - dtnsq;
- if (temp > *rho) {
- eta = *rho + dtnsq;
- }
-
- eta /= *sigma + sqrt(eta + *sigma * *sigma);
- tau += eta;
- *sigma += eta;
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
- work[j] += eta;
- /* L50: */
- }
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L60: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- tau2 = work[*n] * delta[*n];
- temp = z__[*n] / tau2;
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
- /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
-
- w = rhoinv + phi + psi;
-
- /* Main loop to update the values of the array DELTA */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= 400; ++niter) {
-
- /* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
- /* Calculate the new step */
-
- dtnsq1 = work[*n - 1] * delta[*n - 1];
- dtnsq = work[*n] * delta[*n];
- c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
- a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
- b = dtnsq1 * dtnsq * w;
- if (a >= 0.f) {
- eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
- (c__ * 2.f);
- } else {
- eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
- r__1))));
- }
-
- /* Note, eta should be positive if w is negative, and */
- /* eta should be negative otherwise. However, */
- /* if for some reason caused by roundoff, eta*w > 0, */
- /* we simply use one Newton step instead. This way */
- /* will guarantee eta*w < 0. */
-
- if (w * eta > 0.f) {
- eta = -w / (dpsi + dphi);
- }
- temp = eta - dtnsq;
- if (temp <= 0.f) {
- eta /= 2.f;
- }
-
- eta /= *sigma + sqrt(eta + *sigma * *sigma);
- tau += eta;
- *sigma += eta;
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- delta[j] -= eta;
- work[j] += eta;
- /* L70: */
- }
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = ii;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L80: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- tau2 = work[*n] * delta[*n];
- temp = z__[*n] / tau2;
- phi = z__[*n] * temp;
- dphi = temp * temp;
- erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv;
- /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
-
- w = rhoinv + phi + psi;
- /* L90: */
- }
-
- /* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
- goto L240;
-
- /* End for the case I = N */
-
- } else {
-
- /* The case for I < N */
-
- niter = 1;
- ip1 = *i__ + 1;
-
- /* Calculate initial guess */
-
- delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
- delsq2 = delsq / 2.f;
- sq2 = sqrt((d__[*i__] * d__[*i__] + d__[ip1] * d__[ip1]) / 2.f);
- temp = delsq2 / (d__[*i__] + sq2);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[*i__] + temp;
- delta[j] = d__[j] - d__[*i__] - temp;
- /* L100: */
- }
-
- psi = 0.f;
- i__1 = *i__ - 1;
- for (j = 1; j <= i__1; ++j) {
- psi += z__[j] * z__[j] / (work[j] * delta[j]);
- /* L110: */
- }
-
- phi = 0.f;
- i__1 = *i__ + 2;
- for (j = *n; j >= i__1; --j) {
- phi += z__[j] * z__[j] / (work[j] * delta[j]);
- /* L120: */
- }
- c__ = rhoinv + psi + phi;
- w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
- ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
-
- geomavg = FALSE_;
- if (w > 0.f) {
-
- /* d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
-
- /* We choose d(i) as origin. */
-
- orgati = TRUE_;
- ii = *i__;
- sglb = 0.f;
- sgub = delsq2 / (d__[*i__] + sq2);
- a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
- b = z__[*i__] * z__[*i__] * delsq;
- if (a > 0.f) {
- tau2 = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
- r__1))));
- } else {
- tau2 = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
- (c__ * 2.f);
- }
-
- /* TAU2 now is an estimation of SIGMA^2 - D( I )^2. The */
- /* following, however, is the corresponding estimation of */
- /* SIGMA - D( I ). */
-
- tau = tau2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau2));
- temp = sqrt(eps);
- if (d__[*i__] <= temp * d__[ip1] && (r__1 = z__[*i__], abs(r__1))
- <= temp && d__[*i__] > 0.f) {
- /* Computing MIN */
- r__1 = d__[*i__] * 10.f;
- tau = f2cmin(r__1,sgub);
- geomavg = TRUE_;
- }
- } else {
-
- /* (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
-
- /* We choose d(i+1) as origin. */
-
- orgati = FALSE_;
- ii = ip1;
- sglb = -delsq2 / (d__[ii] + sq2);
- sgub = 0.f;
- a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
- b = z__[ip1] * z__[ip1] * delsq;
- if (a < 0.f) {
- tau2 = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, abs(
- r__1))));
- } else {
- tau2 = -(a + sqrt((r__1 = a * a + b * 4.f * c__, abs(r__1))))
- / (c__ * 2.f);
- }
-
- /* TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The */
- /* following, however, is the corresponding estimation of */
- /* SIGMA - D( IP1 ). */
-
- tau = tau2 / (d__[ip1] + sqrt((r__1 = d__[ip1] * d__[ip1] + tau2,
- abs(r__1))));
- }
-
- *sigma = d__[ii] + tau;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] = d__[j] + d__[ii] + tau;
- delta[j] = d__[j] - d__[ii] - tau;
- /* L130: */
- }
- iim1 = ii - 1;
- iip1 = ii + 1;
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L150: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.f;
- phi = 0.f;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
- /* L160: */
- }
-
- w = rhoinv + phi + psi;
-
- /* W is the value of the secular function with */
- /* its ii-th element removed. */
-
- swtch3 = FALSE_;
- if (orgati) {
- if (w < 0.f) {
- swtch3 = TRUE_;
- }
- } else {
- if (w > 0.f) {
- swtch3 = TRUE_;
- }
- }
- if (ii == 1 || ii == *n) {
- swtch3 = FALSE_;
- }
-
- temp = z__[ii] / (work[ii] * delta[ii]);
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w += temp;
- erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f;
- /* $ + ABS( TAU2 )*DW */
-
- /* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- goto L240;
- }
-
- if (w <= 0.f) {
- sglb = f2cmax(sglb,tau);
- } else {
- sgub = f2cmin(sgub,tau);
- }
-
- /* Calculate the new step */
-
- ++niter;
- if (! swtch3) {
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (orgati) {
- /* Computing 2nd power */
- r__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
- } else {
- /* Computing 2nd power */
- r__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (r__1 * r__1);
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.f) {
- if (a == 0.f) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi +
- dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
- dphi);
- }
- }
- eta = b / a;
- } else if (a <= 0.f) {
- eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))) /
- (c__ * 2.f);
- } else {
- eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, abs(
- r__1))));
- }
- } else {
-
- /* Interpolation using THREE most relevant poles */
-
- dtiim = work[iim1] * delta[iim1];
- dtiip = work[iip1] * delta[iip1];
- temp = rhoinv + psi + phi;
- if (orgati) {
- temp1 = z__[iim1] / dtiim;
- temp1 *= temp1;
- c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
- (d__[iim1] + d__[iip1]) * temp1;
- zz[0] = z__[iim1] * z__[iim1];
- if (dpsi < temp1) {
- zz[2] = dtiip * dtiip * dphi;
- } else {
- zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
- }
- } else {
- temp1 = z__[iip1] / dtiip;
- temp1 *= temp1;
- c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
- (d__[iim1] + d__[iip1]) * temp1;
- if (dphi < temp1) {
- zz[0] = dtiim * dtiim * dpsi;
- } else {
- zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
- }
- zz[2] = z__[iip1] * z__[iip1];
- }
- zz[1] = z__[ii] * z__[ii];
- dd[0] = dtiim;
- dd[1] = delta[ii] * work[ii];
- dd[2] = dtiip;
- slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
-
- if (*info != 0) {
-
- /* If INFO is not 0, i.e., SLAED6 failed, switch back */
- /* to 2 pole interpolation. */
-
- swtch3 = FALSE_;
- *info = 0;
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (orgati) {
- /* Computing 2nd power */
- r__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
- } else {
- /* Computing 2nd power */
- r__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (r__1 * r__1);
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.f) {
- if (a == 0.f) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (
- dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
- dphi);
- }
- }
- eta = b / a;
- } else if (a <= 0.f) {
- eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
- ) / (c__ * 2.f);
- } else {
- eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__,
- abs(r__1))));
- }
- }
- }
-
- /* Note, eta should be positive if w is negative, and */
- /* eta should be negative otherwise. However, */
- /* if for some reason caused by roundoff, eta*w > 0, */
- /* we simply use one Newton step instead. This way */
- /* will guarantee eta*w < 0. */
-
- if (w * eta >= 0.f) {
- eta = -w / dw;
- }
-
- eta /= *sigma + sqrt(*sigma * *sigma + eta);
- temp = tau + eta;
- if (temp > sgub || temp < sglb) {
- if (w < 0.f) {
- eta = (sgub - tau) / 2.f;
- } else {
- eta = (sglb - tau) / 2.f;
- }
- if (geomavg) {
- if (w < 0.f) {
- if (tau > 0.f) {
- eta = sqrt(sgub * tau) - tau;
- }
- } else {
- if (sglb > 0.f) {
- eta = sqrt(sglb * tau) - tau;
- }
- }
- }
- }
-
- prew = w;
-
- tau += eta;
- *sigma += eta;
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] += eta;
- delta[j] -= eta;
- /* L170: */
- }
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L180: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.f;
- phi = 0.f;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
- /* L190: */
- }
-
- tau2 = work[ii] * delta[ii];
- temp = z__[ii] / tau2;
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) * 3.f;
- /* $ + ABS( TAU2 )*DW */
-
- swtch = FALSE_;
- if (orgati) {
- if (-w > abs(prew) / 10.f) {
- swtch = TRUE_;
- }
- } else {
- if (w > abs(prew) / 10.f) {
- swtch = TRUE_;
- }
- }
-
- /* Main loop to update the values of the array DELTA and WORK */
-
- iter = niter + 1;
-
- for (niter = iter; niter <= 400; ++niter) {
-
- /* Test for convergence */
-
- if (abs(w) <= eps * erretm) {
- /* $ .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN */
- goto L240;
- }
-
- if (w <= 0.f) {
- sglb = f2cmax(sglb,tau);
- } else {
- sgub = f2cmin(sgub,tau);
- }
-
- /* Calculate the new step */
-
- if (! swtch3) {
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (! swtch) {
- if (orgati) {
- /* Computing 2nd power */
- r__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
- } else {
- /* Computing 2nd power */
- r__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (r__1 * r__1);
- }
- } else {
- temp = z__[ii] / (work[ii] * delta[ii]);
- if (orgati) {
- dpsi += temp * temp;
- } else {
- dphi += temp * temp;
- }
- c__ = w - dtisq * dpsi - dtipsq * dphi;
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.f) {
- if (a == 0.f) {
- if (! swtch) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq * dtipsq *
- (dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
- dpsi + dphi);
- }
- } else {
- a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
- }
- }
- eta = b / a;
- } else if (a <= 0.f) {
- eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(r__1)))
- ) / (c__ * 2.f);
- } else {
- eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__,
- abs(r__1))));
- }
- } else {
-
- /* Interpolation using THREE most relevant poles */
-
- dtiim = work[iim1] * delta[iim1];
- dtiip = work[iip1] * delta[iip1];
- temp = rhoinv + psi + phi;
- if (swtch) {
- c__ = temp - dtiim * dpsi - dtiip * dphi;
- zz[0] = dtiim * dtiim * dpsi;
- zz[2] = dtiip * dtiip * dphi;
- } else {
- if (orgati) {
- temp1 = z__[iim1] / dtiim;
- temp1 *= temp1;
- temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
- iip1]) * temp1;
- c__ = temp - dtiip * (dpsi + dphi) - temp2;
- zz[0] = z__[iim1] * z__[iim1];
- if (dpsi < temp1) {
- zz[2] = dtiip * dtiip * dphi;
- } else {
- zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
- }
- } else {
- temp1 = z__[iip1] / dtiip;
- temp1 *= temp1;
- temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
- iip1]) * temp1;
- c__ = temp - dtiim * (dpsi + dphi) - temp2;
- if (dphi < temp1) {
- zz[0] = dtiim * dtiim * dpsi;
- } else {
- zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
- }
- zz[2] = z__[iip1] * z__[iip1];
- }
- }
- dd[0] = dtiim;
- dd[1] = delta[ii] * work[ii];
- dd[2] = dtiip;
- slaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
-
- if (*info != 0) {
-
- /* If INFO is not 0, i.e., SLAED6 failed, switch */
- /* back to two pole interpolation */
-
- swtch3 = FALSE_;
- *info = 0;
- dtipsq = work[ip1] * delta[ip1];
- dtisq = work[*i__] * delta[*i__];
- if (! swtch) {
- if (orgati) {
- /* Computing 2nd power */
- r__1 = z__[*i__] / dtisq;
- c__ = w - dtipsq * dw + delsq * (r__1 * r__1);
- } else {
- /* Computing 2nd power */
- r__1 = z__[ip1] / dtipsq;
- c__ = w - dtisq * dw - delsq * (r__1 * r__1);
- }
- } else {
- temp = z__[ii] / (work[ii] * delta[ii]);
- if (orgati) {
- dpsi += temp * temp;
- } else {
- dphi += temp * temp;
- }
- c__ = w - dtisq * dpsi - dtipsq * dphi;
- }
- a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
- b = dtipsq * dtisq * w;
- if (c__ == 0.f) {
- if (a == 0.f) {
- if (! swtch) {
- if (orgati) {
- a = z__[*i__] * z__[*i__] + dtipsq *
- dtipsq * (dpsi + dphi);
- } else {
- a = z__[ip1] * z__[ip1] + dtisq * dtisq *
- (dpsi + dphi);
- }
- } else {
- a = dtisq * dtisq * dpsi + dtipsq * dtipsq *
- dphi;
- }
- }
- eta = b / a;
- } else if (a <= 0.f) {
- eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, abs(
- r__1)))) / (c__ * 2.f);
- } else {
- eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f *
- c__, abs(r__1))));
- }
- }
- }
-
- /* Note, eta should be positive if w is negative, and */
- /* eta should be negative otherwise. However, */
- /* if for some reason caused by roundoff, eta*w > 0, */
- /* we simply use one Newton step instead. This way */
- /* will guarantee eta*w < 0. */
-
- if (w * eta >= 0.f) {
- eta = -w / dw;
- }
-
- eta /= *sigma + sqrt(*sigma * *sigma + eta);
- temp = tau + eta;
- if (temp > sgub || temp < sglb) {
- if (w < 0.f) {
- eta = (sgub - tau) / 2.f;
- } else {
- eta = (sglb - tau) / 2.f;
- }
- if (geomavg) {
- if (w < 0.f) {
- if (tau > 0.f) {
- eta = sqrt(sgub * tau) - tau;
- }
- } else {
- if (sglb > 0.f) {
- eta = sqrt(sglb * tau) - tau;
- }
- }
- }
- }
-
- prew = w;
-
- tau += eta;
- *sigma += eta;
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- work[j] += eta;
- delta[j] -= eta;
- /* L200: */
- }
-
- /* Evaluate PSI and the derivative DPSI */
-
- dpsi = 0.f;
- psi = 0.f;
- erretm = 0.f;
- i__1 = iim1;
- for (j = 1; j <= i__1; ++j) {
- temp = z__[j] / (work[j] * delta[j]);
- psi += z__[j] * temp;
- dpsi += temp * temp;
- erretm += psi;
- /* L210: */
- }
- erretm = abs(erretm);
-
- /* Evaluate PHI and the derivative DPHI */
-
- dphi = 0.f;
- phi = 0.f;
- i__1 = iip1;
- for (j = *n; j >= i__1; --j) {
- temp = z__[j] / (work[j] * delta[j]);
- phi += z__[j] * temp;
- dphi += temp * temp;
- erretm += phi;
- /* L220: */
- }
-
- tau2 = work[ii] * delta[ii];
- temp = z__[ii] / tau2;
- dw = dpsi + dphi + temp * temp;
- temp = z__[ii] * temp;
- w = rhoinv + phi + psi + temp;
- erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + abs(temp) *
- 3.f;
- /* $ + ABS( TAU2 )*DW */
-
- if (w * prew > 0.f && abs(w) > abs(prew) / 10.f) {
- swtch = ! swtch;
- }
-
- /* L230: */
- }
-
- /* Return with INFO = 1, NITER = MAXIT and not converged */
-
- *info = 1;
-
- }
-
- L240:
- return;
-
- /* End of SLASD4 */
-
- } /* slasd4_ */
|