|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__0 = 0;
- static real c_b13 = 1.f;
- static real c_b26 = 0.f;
-
- /* > \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in
- D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLASD3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */
- /* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */
- /* INFO ) */
-
- /* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */
- /* $ SQRE */
- /* INTEGER CTOT( * ), IDXC( * ) */
- /* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */
- /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
- /* $ Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLASD3 finds all the square roots of the roots of the secular */
- /* > equation, as defined by the values in D and Z. It makes the */
- /* > appropriate calls to SLASD4 and then updates the singular */
- /* > vectors by matrix multiplication. */
- /* > */
- /* > This code makes very mild assumptions about floating point */
- /* > arithmetic. It will work on machines with a guard digit in */
- /* > add/subtract, or on those binary machines without guard digits */
- /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
- /* > It could conceivably fail on hexadecimal or decimal machines */
- /* > without guard digits, but we know of none. */
- /* > */
- /* > SLASD3 is called from SLASD1. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] NL */
- /* > \verbatim */
- /* > NL is INTEGER */
- /* > The row dimension of the upper block. NL >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NR */
- /* > \verbatim */
- /* > NR is INTEGER */
- /* > The row dimension of the lower block. NR >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SQRE */
- /* > \verbatim */
- /* > SQRE is INTEGER */
- /* > = 0: the lower block is an NR-by-NR square matrix. */
- /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* > */
- /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
- /* > M = N + SQRE >= N columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > The size of the secular equation, 1 =< K = < N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension(K) */
- /* > On exit the square roots of the roots of the secular equation, */
- /* > in ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Q */
- /* > \verbatim */
- /* > Q is REAL array, dimension (LDQ,K) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= K. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] DSIGMA */
- /* > \verbatim */
- /* > DSIGMA is REAL array, dimension(K) */
- /* > The first K elements of this array contain the old roots */
- /* > of the deflated updating problem. These are the poles */
- /* > of the secular equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is REAL array, dimension (LDU, N) */
- /* > The last N - K columns of this matrix contain the deflated */
- /* > left singular vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] U2 */
- /* > \verbatim */
- /* > U2 is REAL array, dimension (LDU2, N) */
- /* > The first K columns of this matrix contain the non-deflated */
- /* > left singular vectors for the split problem. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU2 */
- /* > \verbatim */
- /* > LDU2 is INTEGER */
- /* > The leading dimension of the array U2. LDU2 >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VT */
- /* > \verbatim */
- /* > VT is REAL array, dimension (LDVT, M) */
- /* > The last M - K columns of VT**T contain the deflated */
- /* > right singular vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT */
- /* > \verbatim */
- /* > LDVT is INTEGER */
- /* > The leading dimension of the array VT. LDVT >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VT2 */
- /* > \verbatim */
- /* > VT2 is REAL array, dimension (LDVT2, N) */
- /* > The first K columns of VT2**T contain the non-deflated */
- /* > right singular vectors for the split problem. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT2 */
- /* > \verbatim */
- /* > LDVT2 is INTEGER */
- /* > The leading dimension of the array VT2. LDVT2 >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IDXC */
- /* > \verbatim */
- /* > IDXC is INTEGER array, dimension (N) */
- /* > The permutation used to arrange the columns of U (and rows of */
- /* > VT) into three groups: the first group contains non-zero */
- /* > entries only at and above (or before) NL +1; the second */
- /* > contains non-zero entries only at and below (or after) NL+2; */
- /* > and the third is dense. The first column of U and the row of */
- /* > VT are treated separately, however. */
- /* > */
- /* > The rows of the singular vectors found by SLASD4 */
- /* > must be likewise permuted before the matrix multiplies can */
- /* > take place. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CTOT */
- /* > \verbatim */
- /* > CTOT is INTEGER array, dimension (4) */
- /* > A count of the total number of the various types of columns */
- /* > in U (or rows in VT), as described in IDXC. The fourth column */
- /* > type is any column which has been deflated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (K) */
- /* > The first K elements of this array contain the components */
- /* > of the deflation-adjusted updating row vector. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if INFO = 1, a singular value did not converge */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Huan Ren, Computer Science Division, University of */
- /* > California at Berkeley, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slasd3_(integer *nl, integer *nr, integer *sqre, integer
- *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer *
- ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2,
- integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer *
- info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
- vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
- real r__1, r__2;
-
- /* Local variables */
- real temp;
- extern real snrm2_(integer *, real *, integer *);
- integer i__, j, m, n, ctemp;
- extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, real *,
- real *, integer *);
- integer ktemp;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *);
- extern real slamc3_(real *, real *);
- extern /* Subroutine */ void slasd4_(integer *, integer *, real *, real *,
- real *, real *, real *, real *, integer *);
- integer jc;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void slascl_(
- char *, integer *, integer *, real *, real *, integer *, integer *
- , real *, integer *, integer *), slacpy_(char *, integer *
- , integer *, real *, integer *, real *, integer *);
- real rho;
- integer nlp1, nlp2, nrp1;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --dsigma;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1 * 1;
- vt2 -= vt2_offset;
- --idxc;
- --ctot;
- --z__;
-
- /* Function Body */
- *info = 0;
-
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre != 1 && *sqre != 0) {
- *info = -3;
- }
-
- n = *nl + *nr + 1;
- m = n + *sqre;
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
-
- if (*k < 1 || *k > n) {
- *info = -4;
- } else if (*ldq < *k) {
- *info = -7;
- } else if (*ldu < n) {
- *info = -10;
- } else if (*ldu2 < n) {
- *info = -12;
- } else if (*ldvt < m) {
- *info = -14;
- } else if (*ldvt2 < m) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SLASD3", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*k == 1) {
- d__[1] = abs(z__[1]);
- scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
- if (z__[1] > 0.f) {
- scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
- } else {
- i__1 = n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- u[i__ + u_dim1] = -u2[i__ + u2_dim1];
- /* L10: */
- }
- }
- return;
- }
-
- /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
- /* be computed with high relative accuracy (barring over/underflow). */
- /* This is a problem on machines without a guard digit in */
- /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
- /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
- /* which on any of these machines zeros out the bottommost */
- /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
- /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
- /* occurs. On binary machines with a guard digit (almost all */
- /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
- /* and decimal machines with a guard digit, it slightly */
- /* changes the bottommost bits of DSIGMA(I). It does not account */
- /* for hexadecimal or decimal machines without guard digits */
- /* (we know of none). We use a subroutine call to compute */
- /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
- /* this code. */
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
- /* L20: */
- }
-
- /* Keep a copy of Z. */
-
- scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
-
- /* Normalize Z. */
-
- rho = snrm2_(k, &z__[1], &c__1);
- slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
- rho *= rho;
-
- /* Find the new singular values. */
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
- &vt[j * vt_dim1 + 1], info);
-
- /* If the zero finder fails, report the convergence failure. */
-
- if (*info != 0) {
- return;
- }
- /* L30: */
- }
-
- /* Compute updated Z. */
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
- i__2 = i__ - 1;
- for (j = 1; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
- /* L40: */
- }
- i__2 = *k - 1;
- for (j = i__; j <= i__2; ++j) {
- z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
- i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
- /* L50: */
- }
- r__2 = sqrt((r__1 = z__[i__], abs(r__1)));
- z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]);
- /* L60: */
- }
-
- /* Compute left singular vectors of the modified diagonal matrix, */
- /* and store related information for the right singular vectors. */
-
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
- vt_dim1 + 1];
- u[i__ * u_dim1 + 1] = -1.f;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
- * vt_dim1];
- u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
- /* L70: */
- }
- temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
- q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
- /* L80: */
- }
- /* L90: */
- }
-
- /* Update the left singular vector matrix. */
-
- if (*k == 2) {
- sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
- ldq, &c_b26, &u[u_offset], ldu);
- goto L100;
- }
- if (ctot[1] > 0) {
- sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
- ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
- if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
- , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
- ldu);
- }
- } else if (ctot[3] > 0) {
- ktemp = ctot[1] + 2 + ctot[2];
- sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
- ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
- } else {
- slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
- }
- scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
- ktemp = ctot[1] + 2;
- ctemp = ctot[2] + ctot[3];
- sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
- &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
-
- /* Generate the right singular vectors. */
-
- L100:
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
- q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
- i__2 = *k;
- for (j = 2; j <= i__2; ++j) {
- jc = idxc[j];
- q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
- /* L110: */
- }
- /* L120: */
- }
-
- /* Update the right singular vector matrix. */
-
- if (*k == 2) {
- sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
- , ldvt2, &c_b26, &vt[vt_offset], ldvt);
- return;
- }
- ktemp = ctot[1] + 1;
- sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
- vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
- ktemp = ctot[1] + 2 + ctot[2];
- if (ktemp <= *ldvt2) {
- sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
- ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
- ldvt);
- }
-
- ktemp = ctot[1] + 1;
- nrp1 = *nr + *sqre;
- if (ktemp > 1) {
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
- /* L130: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
- /* L140: */
- }
- }
- ctemp = ctot[2] + 1 + ctot[3];
- sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
- vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
- 1], ldvt);
-
- return;
-
- /* End of SLASD3 */
-
- } /* slasd3_ */
|