|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static real c_b12 = 0.f;
- static real c_b13 = 1.f;
- static logical c_true = TRUE_;
-
- /* > \brief \b SLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
- eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
- */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAQR2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
- /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
- /* LDT, NV, WV, LDWV, WORK, LWORK ) */
-
- /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
- /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
- /* LOGICAL WANTT, WANTZ */
- /* REAL H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
- /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
- /* $ Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAQR2 is identical to SLAQR3 except that it avoids */
- /* > recursion by calling SLAHQR instead of SLAQR4. */
- /* > */
- /* > Aggressive early deflation: */
- /* > */
- /* > This subroutine accepts as input an upper Hessenberg matrix */
- /* > H and performs an orthogonal similarity transformation */
- /* > designed to detect and deflate fully converged eigenvalues from */
- /* > a trailing principal submatrix. On output H has been over- */
- /* > written by a new Hessenberg matrix that is a perturbation of */
- /* > an orthogonal similarity transformation of H. It is to be */
- /* > hoped that the final version of H has many zero subdiagonal */
- /* > entries. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > If .TRUE., then the Hessenberg matrix H is fully updated */
- /* > so that the quasi-triangular Schur factor may be */
- /* > computed (in cooperation with the calling subroutine). */
- /* > If .FALSE., then only enough of H is updated to preserve */
- /* > the eigenvalues. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > If .TRUE., then the orthogonal matrix Z is updated so */
- /* > so that the orthogonal Schur factor may be computed */
- /* > (in cooperation with the calling subroutine). */
- /* > If .FALSE., then Z is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
- /* > order of the orthogonal matrix Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KTOP */
- /* > \verbatim */
- /* > KTOP is INTEGER */
- /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
- /* > KBOT and KTOP together determine an isolated block */
- /* > along the diagonal of the Hessenberg matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KBOT */
- /* > \verbatim */
- /* > KBOT is INTEGER */
- /* > It is assumed without a check that either */
- /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
- /* > determine an isolated block along the diagonal of the */
- /* > Hessenberg matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NW */
- /* > \verbatim */
- /* > NW is INTEGER */
- /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is REAL array, dimension (LDH,N) */
- /* > On input the initial N-by-N section of H stores the */
- /* > Hessenberg matrix undergoing aggressive early deflation. */
- /* > On output H has been transformed by an orthogonal */
- /* > similarity transformation, perturbed, and the returned */
- /* > to Hessenberg form that (it is to be hoped) has some */
- /* > zero subdiagonal entries. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > Leading dimension of H just as declared in the calling */
- /* > subroutine. N <= LDH */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ,N) */
- /* > IF WANTZ is .TRUE., then on output, the orthogonal */
- /* > similarity transformation mentioned above has been */
- /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
- /* > If WANTZ is .FALSE., then Z is unreferenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of Z just as declared in the */
- /* > calling subroutine. 1 <= LDZ. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] NS */
- /* > \verbatim */
- /* > NS is INTEGER */
- /* > The number of unconverged (ie approximate) eigenvalues */
- /* > returned in SR and SI that may be used as shifts by the */
- /* > calling subroutine. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ND */
- /* > \verbatim */
- /* > ND is INTEGER */
- /* > The number of converged eigenvalues uncovered by this */
- /* > subroutine. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SR */
- /* > \verbatim */
- /* > SR is REAL array, dimension (KBOT) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SI */
- /* > \verbatim */
- /* > SI is REAL array, dimension (KBOT) */
- /* > On output, the real and imaginary parts of approximate */
- /* > eigenvalues that may be used for shifts are stored in */
- /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
- /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
- /* > The real and imaginary parts of converged eigenvalues */
- /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
- /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is REAL array, dimension (LDV,NW) */
- /* > An NW-by-NW work array. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > The leading dimension of V just as declared in the */
- /* > calling subroutine. NW <= LDV */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NH */
- /* > \verbatim */
- /* > NH is INTEGER */
- /* > The number of columns of T. NH >= NW. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] T */
- /* > \verbatim */
- /* > T is REAL array, dimension (LDT,NW) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of T just as declared in the */
- /* > calling subroutine. NW <= LDT */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NV */
- /* > \verbatim */
- /* > NV is INTEGER */
- /* > The number of rows of work array WV available for */
- /* > workspace. NV >= NW. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WV */
- /* > \verbatim */
- /* > WV is REAL array, dimension (LDWV,NW) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWV */
- /* > \verbatim */
- /* > LDWV is INTEGER */
- /* > The leading dimension of W just as declared in the */
- /* > calling subroutine. NW <= LDV */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (LWORK) */
- /* > On exit, WORK(1) is set to an estimate of the optimal value */
- /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the work array WORK. LWORK = 2*NW */
- /* > suffices, but greater efficiency may result from larger */
- /* > values of LWORK. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; SLAQR2 */
- /* > only estimates the optimal workspace size for the given */
- /* > values of N, NW, KTOP and KBOT. The estimate is returned */
- /* > in WORK(1). No error message related to LWORK is issued */
- /* > by XERBLA. Neither H nor Z are accessed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slaqr2_(logical *wantt, logical *wantz, integer *n,
- integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh,
- integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns,
- integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh,
- real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
- work, integer *lwork)
- {
- /* System generated locals */
- integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
- wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
- real r__1, r__2, r__3, r__4, r__5, r__6;
-
- /* Local variables */
- real beta;
- integer kend, kcol, info, ifst, ilst, ltop, krow, i__, j, k;
- real s;
- logical bulge;
- extern /* Subroutine */ void slarf_(char *, integer *, integer *, real *,
- integer *, real *, real *, integer *, real *), sgemm_(
- char *, char *, integer *, integer *, integer *, real *, real *,
- integer *, real *, integer *, real *, real *, integer *);
- integer infqr;
- extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
- integer *);
- integer kwtop;
- real aa, bb, cc;
- extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
- , real *, real *, real *, real *, real *);
- real dd, cs;
- extern /* Subroutine */ void slabad_(real *, real *);
- real sn;
- integer jw;
- extern real slamch_(char *);
- extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *);
- real safmin, safmax;
- extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *,
- real *), slahqr_(logical *, logical *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, integer *
- , real *, integer *, integer *), slacpy_(char *, integer *,
- integer *, real *, integer *, real *, integer *), slaset_(
- char *, integer *, integer *, real *, real *, real *, integer *);
- logical sorted;
- extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *,
- real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *);
- real smlnum;
- integer lwkopt;
- real evi, evk, foo;
- integer kln;
- real tau, ulp;
- integer lwk1, lwk2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ================================================================ */
-
- /* ==== Estimate optimal workspace. ==== */
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --sr;
- --si;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- wv_dim1 = *ldwv;
- wv_offset = 1 + wv_dim1 * 1;
- wv -= wv_offset;
- --work;
-
- /* Function Body */
- /* Computing MIN */
- i__1 = *nw, i__2 = *kbot - *ktop + 1;
- jw = f2cmin(i__1,i__2);
- if (jw <= 2) {
- lwkopt = 1;
- } else {
-
- /* ==== Workspace query call to SGEHRD ==== */
-
- i__1 = jw - 1;
- sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
- c_n1, &info);
- lwk1 = (integer) work[1];
-
- /* ==== Workspace query call to SORMHR ==== */
-
- i__1 = jw - 1;
- sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
- &v[v_offset], ldv, &work[1], &c_n1, &info);
- lwk2 = (integer) work[1];
-
- /* ==== Optimal workspace ==== */
-
- lwkopt = jw + f2cmax(lwk1,lwk2);
- }
-
- /* ==== Quick return in case of workspace query. ==== */
-
- if (*lwork == -1) {
- work[1] = (real) lwkopt;
- return;
- }
-
- /* ==== Nothing to do ... */
- /* ... for an empty active block ... ==== */
- *ns = 0;
- *nd = 0;
- work[1] = 1.f;
- if (*ktop > *kbot) {
- return;
- }
- /* ... nor for an empty deflation window. ==== */
- if (*nw < 1) {
- return;
- }
-
- /* ==== Machine constants ==== */
-
- safmin = slamch_("SAFE MINIMUM");
- safmax = 1.f / safmin;
- slabad_(&safmin, &safmax);
- ulp = slamch_("PRECISION");
- smlnum = safmin * ((real) (*n) / ulp);
-
- /* ==== Setup deflation window ==== */
-
- /* Computing MIN */
- i__1 = *nw, i__2 = *kbot - *ktop + 1;
- jw = f2cmin(i__1,i__2);
- kwtop = *kbot - jw + 1;
- if (kwtop == *ktop) {
- s = 0.f;
- } else {
- s = h__[kwtop + (kwtop - 1) * h_dim1];
- }
-
- if (*kbot == kwtop) {
-
- /* ==== 1-by-1 deflation window: not much to do ==== */
-
- sr[kwtop] = h__[kwtop + kwtop * h_dim1];
- si[kwtop] = 0.f;
- *ns = 1;
- *nd = 0;
- /* Computing MAX */
- r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], abs(
- r__1));
- if (abs(s) <= f2cmax(r__2,r__3)) {
- *ns = 0;
- *nd = 1;
- if (kwtop > *ktop) {
- h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
- }
- }
- work[1] = 1.f;
- return;
- }
-
- /* ==== Convert to spike-triangular form. (In case of a */
- /* . rare QR failure, this routine continues to do */
- /* . aggressive early deflation using that part of */
- /* . the deflation window that converged using INFQR */
- /* . here and there to keep track.) ==== */
-
- slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
- ldt);
- i__1 = jw - 1;
- i__2 = *ldh + 1;
- i__3 = *ldt + 1;
- scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
- i__3);
-
- slaset_("A", &jw, &jw, &c_b12, &c_b13, &v[v_offset], ldv);
- slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[kwtop],
- &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
-
- /* ==== STREXC needs a clean margin near the diagonal ==== */
-
- i__1 = jw - 3;
- for (j = 1; j <= i__1; ++j) {
- t[j + 2 + j * t_dim1] = 0.f;
- t[j + 3 + j * t_dim1] = 0.f;
- /* L10: */
- }
- if (jw > 2) {
- t[jw + (jw - 2) * t_dim1] = 0.f;
- }
-
- /* ==== Deflation detection loop ==== */
-
- *ns = jw;
- ilst = infqr + 1;
- L20:
- if (ilst <= *ns) {
- if (*ns == 1) {
- bulge = FALSE_;
- } else {
- bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
- }
-
- /* ==== Small spike tip test for deflation ==== */
-
- if (! bulge) {
-
- /* ==== Real eigenvalue ==== */
-
- foo = (r__1 = t[*ns + *ns * t_dim1], abs(r__1));
- if (foo == 0.f) {
- foo = abs(s);
- }
- /* Computing MAX */
- r__2 = smlnum, r__3 = ulp * foo;
- if ((r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)) <= f2cmax(r__2,r__3))
- {
-
- /* ==== Deflatable ==== */
-
- --(*ns);
- } else {
-
- /* ==== Undeflatable. Move it up out of the way. */
- /* . (STREXC can not fail in this case.) ==== */
-
- ifst = *ns;
- strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
- &ilst, &work[1], &info);
- ++ilst;
- }
- } else {
-
- /* ==== Complex conjugate pair ==== */
-
- foo = (r__3 = t[*ns + *ns * t_dim1], abs(r__3)) + sqrt((r__1 = t[*
- ns + (*ns - 1) * t_dim1], abs(r__1))) * sqrt((r__2 = t[*
- ns - 1 + *ns * t_dim1], abs(r__2)));
- if (foo == 0.f) {
- foo = abs(s);
- }
- /* Computing MAX */
- r__3 = (r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)), r__4 = (r__2 =
- s * v[(*ns - 1) * v_dim1 + 1], abs(r__2));
- /* Computing MAX */
- r__5 = smlnum, r__6 = ulp * foo;
- if (f2cmax(r__3,r__4) <= f2cmax(r__5,r__6)) {
-
- /* ==== Deflatable ==== */
-
- *ns += -2;
- } else {
-
- /* ==== Undeflatable. Move them up out of the way. */
- /* . Fortunately, STREXC does the right thing with */
- /* . ILST in case of a rare exchange failure. ==== */
-
- ifst = *ns;
- strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
- &ilst, &work[1], &info);
- ilst += 2;
- }
- }
-
- /* ==== End deflation detection loop ==== */
-
- goto L20;
- }
-
- /* ==== Return to Hessenberg form ==== */
-
- if (*ns == 0) {
- s = 0.f;
- }
-
- if (*ns < jw) {
-
- /* ==== sorting diagonal blocks of T improves accuracy for */
- /* . graded matrices. Bubble sort deals well with */
- /* . exchange failures. ==== */
-
- sorted = FALSE_;
- i__ = *ns + 1;
- L30:
- if (sorted) {
- goto L50;
- }
- sorted = TRUE_;
-
- kend = i__ - 1;
- i__ = infqr + 1;
- if (i__ == *ns) {
- k = i__ + 1;
- } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
- k = i__ + 1;
- } else {
- k = i__ + 2;
- }
- L40:
- if (k <= kend) {
- if (k == i__ + 1) {
- evi = (r__1 = t[i__ + i__ * t_dim1], abs(r__1));
- } else {
- evi = (r__3 = t[i__ + i__ * t_dim1], abs(r__3)) + sqrt((r__1 =
- t[i__ + 1 + i__ * t_dim1], abs(r__1))) * sqrt((r__2 =
- t[i__ + (i__ + 1) * t_dim1], abs(r__2)));
- }
-
- if (k == kend) {
- evk = (r__1 = t[k + k * t_dim1], abs(r__1));
- } else if (t[k + 1 + k * t_dim1] == 0.f) {
- evk = (r__1 = t[k + k * t_dim1], abs(r__1));
- } else {
- evk = (r__3 = t[k + k * t_dim1], abs(r__3)) + sqrt((r__1 = t[
- k + 1 + k * t_dim1], abs(r__1))) * sqrt((r__2 = t[k +
- (k + 1) * t_dim1], abs(r__2)));
- }
-
- if (evi >= evk) {
- i__ = k;
- } else {
- sorted = FALSE_;
- ifst = i__;
- ilst = k;
- strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
- &ilst, &work[1], &info);
- if (info == 0) {
- i__ = ilst;
- } else {
- i__ = k;
- }
- }
- if (i__ == kend) {
- k = i__ + 1;
- } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
- k = i__ + 1;
- } else {
- k = i__ + 2;
- }
- goto L40;
- }
- goto L30;
- L50:
- ;
- }
-
- /* ==== Restore shift/eigenvalue array from T ==== */
-
- i__ = jw;
- L60:
- if (i__ >= infqr + 1) {
- if (i__ == infqr + 1) {
- sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
- si[kwtop + i__ - 1] = 0.f;
- --i__;
- } else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
- sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
- si[kwtop + i__ - 1] = 0.f;
- --i__;
- } else {
- aa = t[i__ - 1 + (i__ - 1) * t_dim1];
- cc = t[i__ + (i__ - 1) * t_dim1];
- bb = t[i__ - 1 + i__ * t_dim1];
- dd = t[i__ + i__ * t_dim1];
- slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
- - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
- sn);
- i__ += -2;
- }
- goto L60;
- }
-
- if (*ns < jw || s == 0.f) {
- if (*ns > 1 && s != 0.f) {
-
- /* ==== Reflect spike back into lower triangle ==== */
-
- scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
- beta = work[1];
- slarfg_(ns, &beta, &work[2], &c__1, &tau);
- work[1] = 1.f;
-
- i__1 = jw - 2;
- i__2 = jw - 2;
- slaset_("L", &i__1, &i__2, &c_b12, &c_b12, &t[t_dim1 + 3], ldt);
-
- slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
- work[jw + 1]);
- slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
- work[jw + 1]);
- slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
- work[jw + 1]);
-
- i__1 = *lwork - jw;
- sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
- , &i__1, &info);
- }
-
- /* ==== Copy updated reduced window into place ==== */
-
- if (kwtop > 1) {
- h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
- }
- slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
- , ldh);
- i__1 = jw - 1;
- i__2 = *ldt + 1;
- i__3 = *ldh + 1;
- scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
- &i__3);
-
- /* ==== Accumulate orthogonal matrix in order update */
- /* . H and Z, if requested. ==== */
-
- if (*ns > 1 && s != 0.f) {
- i__1 = *lwork - jw;
- sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
- &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
- }
-
- /* ==== Update vertical slab in H ==== */
-
- if (*wantt) {
- ltop = 1;
- } else {
- ltop = *ktop;
- }
- i__1 = kwtop - 1;
- i__2 = *nv;
- for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
- i__2) {
- /* Computing MIN */
- i__3 = *nv, i__4 = kwtop - krow;
- kln = f2cmin(i__3,i__4);
- sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &h__[krow + kwtop *
- h_dim1], ldh, &v[v_offset], ldv, &c_b12, &wv[wv_offset],
- ldwv);
- slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
- h_dim1], ldh);
- /* L70: */
- }
-
- /* ==== Update horizontal slab in H ==== */
-
- if (*wantt) {
- i__2 = *n;
- i__1 = *nh;
- for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
- kcol += i__1) {
- /* Computing MIN */
- i__3 = *nh, i__4 = *n - kcol + 1;
- kln = f2cmin(i__3,i__4);
- sgemm_("C", "N", &jw, &kln, &jw, &c_b13, &v[v_offset], ldv, &
- h__[kwtop + kcol * h_dim1], ldh, &c_b12, &t[t_offset],
- ldt);
- slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
- h_dim1], ldh);
- /* L80: */
- }
- }
-
- /* ==== Update vertical slab in Z ==== */
-
- if (*wantz) {
- i__1 = *ihiz;
- i__2 = *nv;
- for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
- i__2) {
- /* Computing MIN */
- i__3 = *nv, i__4 = *ihiz - krow + 1;
- kln = f2cmin(i__3,i__4);
- sgemm_("N", "N", &kln, &jw, &jw, &c_b13, &z__[krow + kwtop *
- z_dim1], ldz, &v[v_offset], ldv, &c_b12, &wv[
- wv_offset], ldwv);
- slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
- kwtop * z_dim1], ldz);
- /* L90: */
- }
- }
- }
-
- /* ==== Return the number of deflations ... ==== */
-
- *nd = jw - *ns;
-
- /* ==== ... and the number of shifts. (Subtracting */
- /* . INFQR from the spike length takes care */
- /* . of the case of a rare QR failure while */
- /* . calculating eigenvalues of the deflation */
- /* . window.) ==== */
-
- *ns -= infqr;
-
- /* ==== Return optimal workspace. ==== */
-
- work[1] = (real) lwkopt;
-
- /* ==== End of SLAQR2 ==== */
-
- return;
- } /* slaqr2_ */
|