|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__13 = 13;
- static integer c__15 = 15;
- static integer c_n1 = -1;
- static integer c__12 = 12;
- static integer c__14 = 14;
- static integer c__16 = 16;
- static logical c_false = FALSE_;
- static integer c__1 = 1;
- static integer c__3 = 3;
-
- /* > \brief \b SLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
- hur decomposition. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAQR0 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr0.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr0.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr0.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
- /* ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
-
- /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
- /* LOGICAL WANTT, WANTZ */
- /* REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ), */
- /* $ Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAQR0 computes the eigenvalues of a Hessenberg matrix H */
- /* > and, optionally, the matrices T and Z from the Schur decomposition */
- /* > H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
- /* > Schur form), and Z is the orthogonal matrix of Schur vectors. */
- /* > */
- /* > Optionally Z may be postmultiplied into an input orthogonal */
- /* > matrix Q so that this routine can give the Schur factorization */
- /* > of a matrix A which has been reduced to the Hessenberg form H */
- /* > by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > = .TRUE. : the full Schur form T is required; */
- /* > = .FALSE.: only eigenvalues are required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > = .TRUE. : the matrix of Schur vectors Z is required; */
- /* > = .FALSE.: Schur vectors are not required. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > It is assumed that H is already upper triangular in rows */
- /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
- /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
- /* > previous call to SGEBAL, and then passed to SGEHRD when the */
- /* > matrix output by SGEBAL is reduced to Hessenberg form. */
- /* > Otherwise, ILO and IHI should be set to 1 and N, */
- /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
- /* > If N = 0, then ILO = 1 and IHI = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is REAL array, dimension (LDH,N) */
- /* > On entry, the upper Hessenberg matrix H. */
- /* > On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
- /* > the upper quasi-triangular matrix T from the Schur */
- /* > decomposition (the Schur form); 2-by-2 diagonal blocks */
- /* > (corresponding to complex conjugate pairs of eigenvalues) */
- /* > are returned in standard form, with H(i,i) = H(i+1,i+1) */
- /* > and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is */
- /* > .FALSE., then the contents of H are unspecified on exit. */
- /* > (The output value of H when INFO > 0 is given under the */
- /* > description of INFO below.) */
- /* > */
- /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
- /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR */
- /* > \verbatim */
- /* > WR is REAL array, dimension (IHI) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WI */
- /* > \verbatim */
- /* > WI is REAL array, dimension (IHI) */
- /* > The real and imaginary parts, respectively, of the computed */
- /* > eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
- /* > and WI(ILO:IHI). If two eigenvalues are computed as a */
- /* > complex conjugate pair, they are stored in consecutive */
- /* > elements of WR and WI, say the i-th and (i+1)th, with */
- /* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then */
- /* > the eigenvalues are stored in the same order as on the */
- /* > diagonal of the Schur form returned in H, with */
- /* > WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
- /* > block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
- /* > WI(i+1) = -WI(i). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. */
- /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ,IHI) */
- /* > If WANTZ is .FALSE., then Z is not referenced. */
- /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
- /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
- /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
- /* > (The output value of Z when INFO > 0 is given under */
- /* > the description of INFO below.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
- /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension LWORK */
- /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
- /* > the optimal value for LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
- /* > is sufficient, but LWORK typically as large as 6*N may */
- /* > be required for optimal performance. A workspace query */
- /* > to determine the optimal workspace size is recommended. */
- /* > */
- /* > If LWORK = -1, then SLAQR0 does a workspace query. */
- /* > In this case, SLAQR0 checks the input parameters and */
- /* > estimates the optimal workspace size for the given */
- /* > values of N, ILO and IHI. The estimate is returned */
- /* > in WORK(1). No error message related to LWORK is */
- /* > issued by XERBLA. Neither H nor Z are accessed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > > 0: if INFO = i, SLAQR0 failed to compute all of */
- /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
- /* > and WI contain those eigenvalues which have been */
- /* > successfully computed. (Failures are rare.) */
- /* > */
- /* > If INFO > 0 and WANT is .FALSE., then on exit, */
- /* > the remaining unconverged eigenvalues are the eigen- */
- /* > values of the upper Hessenberg matrix rows and */
- /* > columns ILO through INFO of the final, output */
- /* > value of H. */
- /* > */
- /* > If INFO > 0 and WANTT is .TRUE., then on exit */
- /* > */
- /* > (*) (initial value of H)*U = U*(final value of H) */
- /* > */
- /* > where U is an orthogonal matrix. The final */
- /* > value of H is upper Hessenberg and quasi-triangular */
- /* > in rows and columns INFO+1 through IHI. */
- /* > */
- /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
- /* > */
- /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
- /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
- /* > */
- /* > where U is the orthogonal matrix in (*) (regard- */
- /* > less of the value of WANTT.) */
- /* > */
- /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
- /* > accessed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* > 929--947, 2002. */
- /* > \n */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
- /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slaqr0_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real *
- wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, real *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- real r__1, r__2, r__3, r__4;
-
- /* Local variables */
- integer ndec, ndfl, kbot, nmin;
- real swap;
- integer ktop;
- real zdum[1] /* was [1][1] */;
- integer kacc22, i__, k, itmax, nsmax, nwmax, kwtop;
- real aa, bb;
- extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
- , real *, real *, real *, real *, real *);
- real cc;
- extern /* Subroutine */ void slaqr3_(logical *, logical *, integer *,
- integer *, integer *, integer *, real *, integer *, integer *,
- integer *, real *, integer *, integer *, integer *, real *, real *
- , real *, integer *, integer *, real *, integer *, integer *,
- real *, integer *, real *, integer *);
- real dd;
- extern /* Subroutine */ void slaqr4_(logical *, logical *, integer *,
- integer *, integer *, real *, integer *, real *, real *, integer *
- , integer *, real *, integer *, real *, integer *, integer *),
- slaqr5_(logical *, logical *, integer *, integer *, integer *,
- integer *, integer *, real *, real *, real *, integer *, integer *
- , integer *, real *, integer *, real *, integer *, real *,
- integer *, integer *, real *, integer *, integer *, real *,
- integer *);
- integer ld;
- real cs;
- integer nh, nibble, it, ks, kt;
- real sn;
- integer ku, kv, ls, ns;
- real ss;
- integer nw;
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- char jbcmpz[2];
- extern /* Subroutine */ void slahqr_(logical *, logical *, integer *,
- integer *, integer *, real *, integer *, real *, real *, integer *
- , integer *, real *, integer *, integer *), slacpy_(char *,
- integer *, integer *, real *, integer *, real *, integer *);
- integer nwupbd;
- logical sorted;
- integer lwkopt, inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ================================================================ */
-
- /* ==== Matrices of order NTINY or smaller must be processed by */
- /* . SLAHQR because of insufficient subdiagonal scratch space. */
- /* . (This is a hard limit.) ==== */
-
- /* ==== Exceptional deflation windows: try to cure rare */
- /* . slow convergence by varying the size of the */
- /* . deflation window after KEXNW iterations. ==== */
-
- /* ==== Exceptional shifts: try to cure rare slow convergence */
- /* . with ad-hoc exceptional shifts every KEXSH iterations. */
- /* . ==== */
-
- /* ==== The constants WILK1 and WILK2 are used to form the */
- /* . exceptional shifts. ==== */
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --wr;
- --wi;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- /* ==== Quick return for N = 0: nothing to do. ==== */
-
- if (*n == 0) {
- work[1] = 1.f;
- return;
- }
-
- if (*n <= 15) {
-
- /* ==== Tiny matrices must use SLAHQR. ==== */
-
- lwkopt = 1;
- if (*lwork != -1) {
- slahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
- wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
- }
- } else {
-
- /* ==== Use small bulge multi-shift QR with aggressive early */
- /* . deflation on larger-than-tiny matrices. ==== */
-
- /* ==== Hope for the best. ==== */
-
- *info = 0;
-
- /* ==== Set up job flags for ILAENV. ==== */
-
- if (*wantt) {
- *(unsigned char *)jbcmpz = 'S';
- } else {
- *(unsigned char *)jbcmpz = 'E';
- }
- if (*wantz) {
- *(unsigned char *)&jbcmpz[1] = 'V';
- } else {
- *(unsigned char *)&jbcmpz[1] = 'N';
- }
-
- /* ==== NWR = recommended deflation window size. At this */
- /* . point, N .GT. NTINY = 15, so there is enough */
- /* . subdiagonal workspace for NWR.GE.2 as required. */
- /* . (In fact, there is enough subdiagonal space for */
- /* . NWR.GE.4.) ==== */
-
- nwr = ilaenv_(&c__13, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
- (ftnlen)2);
- nwr = f2cmax(2,nwr);
- /* Computing MIN */
- i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
- nwr = f2cmin(i__1,nwr);
-
- /* ==== NSR = recommended number of simultaneous shifts. */
- /* . At this point N .GT. NTINY = 15, so there is at */
- /* . enough subdiagonal workspace for NSR to be even */
- /* . and greater than or equal to two as required. ==== */
-
- nsr = ilaenv_(&c__15, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
- (ftnlen)2);
- /* Computing MIN */
- i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
- *ilo;
- nsr = f2cmin(i__1,i__2);
- /* Computing MAX */
- i__1 = 2, i__2 = nsr - nsr % 2;
- nsr = f2cmax(i__1,i__2);
-
- /* ==== Estimate optimal workspace ==== */
-
- /* ==== Workspace query call to SLAQR3 ==== */
-
- i__1 = nwr + 1;
- slaqr3_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
- ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
- h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
- ldh, &work[1], &c_n1);
-
- /* ==== Optimal workspace = MAX(SLAQR5, SLAQR3) ==== */
-
- /* Computing MAX */
- i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
-
- /* ==== Quick return in case of workspace query. ==== */
-
- if (*lwork == -1) {
- work[1] = (real) lwkopt;
- return;
- }
-
- /* ==== SLAHQR/SLAQR0 crossover point ==== */
-
- nmin = ilaenv_(&c__12, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
- 6, (ftnlen)2);
- nmin = f2cmax(15,nmin);
-
- /* ==== Nibble crossover point ==== */
-
- nibble = ilaenv_(&c__14, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (
- ftnlen)6, (ftnlen)2);
- nibble = f2cmax(0,nibble);
-
- /* ==== Accumulate reflections during ttswp? Use block */
- /* . 2-by-2 structure during matrix-matrix multiply? ==== */
-
- kacc22 = ilaenv_(&c__16, "SLAQR0", jbcmpz, n, ilo, ihi, lwork, (
- ftnlen)6, (ftnlen)2);
- kacc22 = f2cmax(0,kacc22);
- kacc22 = f2cmin(2,kacc22);
-
- /* ==== NWMAX = the largest possible deflation window for */
- /* . which there is sufficient workspace. ==== */
-
- /* Computing MIN */
- i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
- nwmax = f2cmin(i__1,i__2);
- nw = nwmax;
-
- /* ==== NSMAX = the Largest number of simultaneous shifts */
- /* . for which there is sufficient workspace. ==== */
-
- /* Computing MIN */
- i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
- nsmax = f2cmin(i__1,i__2);
- nsmax -= nsmax % 2;
-
- /* ==== NDFL: an iteration count restarted at deflation. ==== */
-
- ndfl = 1;
-
- /* ==== ITMAX = iteration limit ==== */
-
- /* Computing MAX */
- i__1 = 10, i__2 = *ihi - *ilo + 1;
- itmax = 30 * f2cmax(i__1,i__2);
-
- /* ==== Last row and column in the active block ==== */
-
- kbot = *ihi;
-
- /* ==== Main Loop ==== */
-
- i__1 = itmax;
- for (it = 1; it <= i__1; ++it) {
-
- /* ==== Done when KBOT falls below ILO ==== */
-
- if (kbot < *ilo) {
- goto L90;
- }
-
- /* ==== Locate active block ==== */
-
- i__2 = *ilo + 1;
- for (k = kbot; k >= i__2; --k) {
- if (h__[k + (k - 1) * h_dim1] == 0.f) {
- goto L20;
- }
- /* L10: */
- }
- k = *ilo;
- L20:
- ktop = k;
-
- /* ==== Select deflation window size: */
- /* . Typical Case: */
- /* . If possible and advisable, nibble the entire */
- /* . active block. If not, use size MIN(NWR,NWMAX) */
- /* . or MIN(NWR+1,NWMAX) depending upon which has */
- /* . the smaller corresponding subdiagonal entry */
- /* . (a heuristic). */
- /* . */
- /* . Exceptional Case: */
- /* . If there have been no deflations in KEXNW or */
- /* . more iterations, then vary the deflation window */
- /* . size. At first, because, larger windows are, */
- /* . in general, more powerful than smaller ones, */
- /* . rapidly increase the window to the maximum possible. */
- /* . Then, gradually reduce the window size. ==== */
-
- nh = kbot - ktop + 1;
- nwupbd = f2cmin(nh,nwmax);
- if (ndfl < 5) {
- nw = f2cmin(nwupbd,nwr);
- } else {
- /* Computing MIN */
- i__2 = nwupbd, i__3 = nw << 1;
- nw = f2cmin(i__2,i__3);
- }
- if (nw < nwmax) {
- if (nw >= nh - 1) {
- nw = nh;
- } else {
- kwtop = kbot - nw + 1;
- if ((r__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(r__1))
- > (r__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
- abs(r__2))) {
- ++nw;
- }
- }
- }
- if (ndfl < 5) {
- ndec = -1;
- } else if (ndec >= 0 || nw >= nwupbd) {
- ++ndec;
- if (nw - ndec < 2) {
- ndec = 0;
- }
- nw -= ndec;
- }
-
- /* ==== Aggressive early deflation: */
- /* . split workspace under the subdiagonal into */
- /* . - an nw-by-nw work array V in the lower */
- /* . left-hand-corner, */
- /* . - an NW-by-at-least-NW-but-more-is-better */
- /* . (NW-by-NHO) horizontal work array along */
- /* . the bottom edge, */
- /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
- /* . vertical work array along the left-hand-edge. */
- /* . ==== */
-
- kv = *n - nw + 1;
- kt = nw + 1;
- nho = *n - nw - 1 - kt + 1;
- kwv = nw + 2;
- nve = *n - nw - kwv + 1;
-
- /* ==== Aggressive early deflation ==== */
-
- slaqr3_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
- iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
- &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
- ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
-
- /* ==== Adjust KBOT accounting for new deflations. ==== */
-
- kbot -= ld;
-
- /* ==== KS points to the shifts. ==== */
-
- ks = kbot - ls + 1;
-
- /* ==== Skip an expensive QR sweep if there is a (partly */
- /* . heuristic) reason to expect that many eigenvalues */
- /* . will deflate without it. Here, the QR sweep is */
- /* . skipped if many eigenvalues have just been deflated */
- /* . or if the remaining active block is small. */
-
- if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
- nmin,nwmax)) {
-
- /* ==== NS = nominal number of simultaneous shifts. */
- /* . This may be lowered (slightly) if SLAQR3 */
- /* . did not provide that many shifts. ==== */
-
- /* Computing MIN */
- /* Computing MAX */
- i__4 = 2, i__5 = kbot - ktop;
- i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
- ns = f2cmin(i__2,i__3);
- ns -= ns % 2;
-
- /* ==== If there have been no deflations */
- /* . in a multiple of KEXSH iterations, */
- /* . then try exceptional shifts. */
- /* . Otherwise use shifts provided by */
- /* . SLAQR3 above or from the eigenvalues */
- /* . of a trailing principal submatrix. ==== */
-
- if (ndfl % 6 == 0) {
- ks = kbot - ns + 1;
- /* Computing MAX */
- i__3 = ks + 1, i__4 = ktop + 2;
- i__2 = f2cmax(i__3,i__4);
- for (i__ = kbot; i__ >= i__2; i__ += -2) {
- ss = (r__1 = h__[i__ + (i__ - 1) * h_dim1], abs(r__1))
- + (r__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
- abs(r__2));
- aa = ss * .75f + h__[i__ + i__ * h_dim1];
- bb = ss;
- cc = ss * -.4375f;
- dd = aa;
- slanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
- , &wr[i__], &wi[i__], &cs, &sn);
- /* L30: */
- }
- if (ks == ktop) {
- wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
- wi[ks + 1] = 0.f;
- wr[ks] = wr[ks + 1];
- wi[ks] = wi[ks + 1];
- }
- } else {
-
- /* ==== Got NS/2 or fewer shifts? Use SLAQR4 or */
- /* . SLAHQR on a trailing principal submatrix to */
- /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
- /* . there is enough space below the subdiagonal */
- /* . to fit an NS-by-NS scratch array.) ==== */
-
- if (kbot - ks + 1 <= ns / 2) {
- ks = kbot - ns + 1;
- kt = *n - ns + 1;
- slacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
- h__[kt + h_dim1], ldh);
- if (ns > nmin) {
- slaqr4_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
- kt + h_dim1], ldh, &wr[ks], &wi[ks], &
- c__1, &c__1, zdum, &c__1, &work[1], lwork,
- &inf);
- } else {
- slahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[
- kt + h_dim1], ldh, &wr[ks], &wi[ks], &
- c__1, &c__1, zdum, &c__1, &inf);
- }
- ks += inf;
-
- /* ==== In case of a rare QR failure use */
- /* . eigenvalues of the trailing 2-by-2 */
- /* . principal submatrix. ==== */
-
- if (ks >= kbot) {
- aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
- cc = h__[kbot + (kbot - 1) * h_dim1];
- bb = h__[kbot - 1 + kbot * h_dim1];
- dd = h__[kbot + kbot * h_dim1];
- slanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
- kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
- ;
- ks = kbot - 1;
- }
- }
-
- if (kbot - ks + 1 > ns) {
-
- /* ==== Sort the shifts (Helps a little) */
- /* . Bubble sort keeps complex conjugate */
- /* . pairs together. ==== */
-
- sorted = FALSE_;
- i__2 = ks + 1;
- for (k = kbot; k >= i__2; --k) {
- if (sorted) {
- goto L60;
- }
- sorted = TRUE_;
- i__3 = k - 1;
- for (i__ = ks; i__ <= i__3; ++i__) {
- if ((r__1 = wr[i__], abs(r__1)) + (r__2 = wi[
- i__], abs(r__2)) < (r__3 = wr[i__ + 1]
- , abs(r__3)) + (r__4 = wi[i__ + 1],
- abs(r__4))) {
- sorted = FALSE_;
-
- swap = wr[i__];
- wr[i__] = wr[i__ + 1];
- wr[i__ + 1] = swap;
-
- swap = wi[i__];
- wi[i__] = wi[i__ + 1];
- wi[i__ + 1] = swap;
- }
- /* L40: */
- }
- /* L50: */
- }
- L60:
- ;
- }
-
- /* ==== Shuffle shifts into pairs of real shifts */
- /* . and pairs of complex conjugate shifts */
- /* . assuming complex conjugate shifts are */
- /* . already adjacent to one another. (Yes, */
- /* . they are.) ==== */
-
- i__2 = ks + 2;
- for (i__ = kbot; i__ >= i__2; i__ += -2) {
- if (wi[i__] != -wi[i__ - 1]) {
-
- swap = wr[i__];
- wr[i__] = wr[i__ - 1];
- wr[i__ - 1] = wr[i__ - 2];
- wr[i__ - 2] = swap;
-
- swap = wi[i__];
- wi[i__] = wi[i__ - 1];
- wi[i__ - 1] = wi[i__ - 2];
- wi[i__ - 2] = swap;
- }
- /* L70: */
- }
- }
-
- /* ==== If there are only two shifts and both are */
- /* . real, then use only one. ==== */
-
- if (kbot - ks + 1 == 2) {
- if (wi[kbot] == 0.f) {
- if ((r__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
- r__1)) < (r__2 = wr[kbot - 1] - h__[kbot +
- kbot * h_dim1], abs(r__2))) {
- wr[kbot - 1] = wr[kbot];
- } else {
- wr[kbot] = wr[kbot - 1];
- }
- }
- }
-
- /* ==== Use up to NS of the the smallest magnitude */
- /* . shifts. If there aren't NS shifts available, */
- /* . then use them all, possibly dropping one to */
- /* . make the number of shifts even. ==== */
-
- /* Computing MIN */
- i__2 = ns, i__3 = kbot - ks + 1;
- ns = f2cmin(i__2,i__3);
- ns -= ns % 2;
- ks = kbot - ns + 1;
-
- /* ==== Small-bulge multi-shift QR sweep: */
- /* . split workspace under the subdiagonal into */
- /* . - a KDU-by-KDU work array U in the lower */
- /* . left-hand-corner, */
- /* . - a KDU-by-at-least-KDU-but-more-is-better */
- /* . (KDU-by-NHo) horizontal work array WH along */
- /* . the bottom edge, */
- /* . - and an at-least-KDU-but-more-is-better-by-KDU */
- /* . (NVE-by-KDU) vertical work WV arrow along */
- /* . the left-hand-edge. ==== */
-
- kdu = ns << 1;
- ku = *n - kdu + 1;
- kwh = kdu + 1;
- nho = *n - kdu - 3 - (kdu + 1) + 1;
- kwv = kdu + 4;
- nve = *n - kdu - kwv + 1;
-
- /* ==== Small-bulge multi-shift QR sweep ==== */
-
- slaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
- &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
- z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
- ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
- kwh * h_dim1], ldh);
- }
-
- /* ==== Note progress (or the lack of it). ==== */
-
- if (ld > 0) {
- ndfl = 1;
- } else {
- ++ndfl;
- }
-
- /* ==== End of main loop ==== */
- /* L80: */
- }
-
- /* ==== Iteration limit exceeded. Set INFO to show where */
- /* . the problem occurred and exit. ==== */
-
- *info = kbot;
- L90:
- ;
- }
-
- /* ==== Return the optimal value of LWORK. ==== */
-
- work[1] = (real) lwkopt;
-
- /* ==== End of SLAQR0 ==== */
-
- return;
- } /* slaqr0_ */
|