|
- *> \brief \b SLAQP2 computes a QR factorization with column pivoting of the matrix block.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAQP2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqp2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqp2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqp2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
- * WORK )
- *
- * .. Scalar Arguments ..
- * INTEGER LDA, M, N, OFFSET
- * ..
- * .. Array Arguments ..
- * INTEGER JPVT( * )
- * REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAQP2 computes a QR factorization with column pivoting of
- *> the block A(OFFSET+1:M,1:N).
- *> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] OFFSET
- *> \verbatim
- *> OFFSET is INTEGER
- *> The number of rows of the matrix A that must be pivoted
- *> but no factorized. OFFSET >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
- *> the triangular factor obtained; the elements in block
- *> A(OFFSET+1:M,1:N) below the diagonal, together with the
- *> array TAU, represent the orthogonal matrix Q as a product of
- *> elementary reflectors. Block A(1:OFFSET,1:N) has been
- *> accordingly pivoted, but no factorized.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] JPVT
- *> \verbatim
- *> JPVT is INTEGER array, dimension (N)
- *> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
- *> to the front of A*P (a leading column); if JPVT(i) = 0,
- *> the i-th column of A is a free column.
- *> On exit, if JPVT(i) = k, then the i-th column of A*P
- *> was the k-th column of A.
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors.
- *> \endverbatim
- *>
- *> \param[in,out] VN1
- *> \verbatim
- *> VN1 is REAL array, dimension (N)
- *> The vector with the partial column norms.
- *> \endverbatim
- *>
- *> \param[in,out] VN2
- *> \verbatim
- *> VN2 is REAL array, dimension (N)
- *> The vector with the exact column norms.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
- *> X. Sun, Computer Science Dept., Duke University, USA
- *> \n
- *> Partial column norm updating strategy modified on April 2011
- *> Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
- *> University of Zagreb, Croatia.
- *
- *> \par References:
- * ================
- *>
- *> LAPACK Working Note 176
- *
- *> \htmlonly
- *> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a>
- *> \endhtmlonly
- *
- * =====================================================================
- SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
- $ WORK )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDA, M, N, OFFSET
- * ..
- * .. Array Arguments ..
- INTEGER JPVT( * )
- REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, ITEMP, J, MN, OFFPI, PVT
- REAL AII, TEMP, TEMP2, TOL3Z
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARF, SLARFG, SSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SLAMCH, SNRM2
- EXTERNAL ISAMAX, SLAMCH, SNRM2
- * ..
- * .. Executable Statements ..
- *
- MN = MIN( M-OFFSET, N )
- TOL3Z = SQRT(SLAMCH('Epsilon'))
- *
- * Compute factorization.
- *
- DO 20 I = 1, MN
- *
- OFFPI = OFFSET + I
- *
- * Determine ith pivot column and swap if necessary.
- *
- PVT = ( I-1 ) + ISAMAX( N-I+1, VN1( I ), 1 )
- *
- IF( PVT.NE.I ) THEN
- CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 )
- ITEMP = JPVT( PVT )
- JPVT( PVT ) = JPVT( I )
- JPVT( I ) = ITEMP
- VN1( PVT ) = VN1( I )
- VN2( PVT ) = VN2( I )
- END IF
- *
- * Generate elementary reflector H(i).
- *
- IF( OFFPI.LT.M ) THEN
- CALL SLARFG( M-OFFPI+1, A( OFFPI, I ), A( OFFPI+1, I ), 1,
- $ TAU( I ) )
- ELSE
- CALL SLARFG( 1, A( M, I ), A( M, I ), 1, TAU( I ) )
- END IF
- *
- IF( I.LT.N ) THEN
- *
- * Apply H(i)**T to A(offset+i:m,i+1:n) from the left.
- *
- AII = A( OFFPI, I )
- A( OFFPI, I ) = ONE
- CALL SLARF( 'Left', M-OFFPI+1, N-I, A( OFFPI, I ), 1,
- $ TAU( I ), A( OFFPI, I+1 ), LDA, WORK( 1 ) )
- A( OFFPI, I ) = AII
- END IF
- *
- * Update partial column norms.
- *
- DO 10 J = I + 1, N
- IF( VN1( J ).NE.ZERO ) THEN
- *
- * NOTE: The following 4 lines follow from the analysis in
- * Lapack Working Note 176.
- *
- TEMP = ONE - ( ABS( A( OFFPI, J ) ) / VN1( J ) )**2
- TEMP = MAX( TEMP, ZERO )
- TEMP2 = TEMP*( VN1( J ) / VN2( J ) )**2
- IF( TEMP2 .LE. TOL3Z ) THEN
- IF( OFFPI.LT.M ) THEN
- VN1( J ) = SNRM2( M-OFFPI, A( OFFPI+1, J ), 1 )
- VN2( J ) = VN1( J )
- ELSE
- VN1( J ) = ZERO
- VN2( J ) = ZERO
- END IF
- ELSE
- VN1( J ) = VN1( J )*SQRT( TEMP )
- END IF
- END IF
- 10 CONTINUE
- *
- 20 CONTINUE
- *
- RETURN
- *
- * End of SLAQP2
- *
- END
|