|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b SLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLALN2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaln2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaln2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaln2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */
- /* LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */
-
- /* LOGICAL LTRANS */
- /* INTEGER INFO, LDA, LDB, LDX, NA, NW */
- /* REAL CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */
- /* REAL A( LDA, * ), B( LDB, * ), X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLALN2 solves a system of the form (ca A - w D ) X = s B */
- /* > or (ca A**T - w D) X = s B with possible scaling ("s") and */
- /* > perturbation of A. (A**T means A-transpose.) */
- /* > */
- /* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
- /* > real diagonal matrix, w is a real or complex value, and X and B are */
- /* > NA x 1 matrices -- real if w is real, complex if w is complex. NA */
- /* > may be 1 or 2. */
- /* > */
- /* > If w is complex, X and B are represented as NA x 2 matrices, */
- /* > the first column of each being the real part and the second */
- /* > being the imaginary part. */
- /* > */
- /* > "s" is a scaling factor (<= 1), computed by SLALN2, which is */
- /* > so chosen that X can be computed without overflow. X is further */
- /* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
- /* > than overflow. */
- /* > */
- /* > If both singular values of (ca A - w D) are less than SMIN, */
- /* > SMIN*identity will be used instead of (ca A - w D). If only one */
- /* > singular value is less than SMIN, one element of (ca A - w D) will be */
- /* > perturbed enough to make the smallest singular value roughly SMIN. */
- /* > If both singular values are at least SMIN, (ca A - w D) will not be */
- /* > perturbed. In any case, the perturbation will be at most some small */
- /* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ). The singular values */
- /* > are computed by infinity-norm approximations, and thus will only be */
- /* > correct to a factor of 2 or so. */
- /* > */
- /* > Note: all input quantities are assumed to be smaller than overflow */
- /* > by a reasonable factor. (See BIGNUM.) */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] LTRANS */
- /* > \verbatim */
- /* > LTRANS is LOGICAL */
- /* > =.TRUE.: A-transpose will be used. */
- /* > =.FALSE.: A will be used (not transposed.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NA */
- /* > \verbatim */
- /* > NA is INTEGER */
- /* > The size of the matrix A. It may (only) be 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NW */
- /* > \verbatim */
- /* > NW is INTEGER */
- /* > 1 if "w" is real, 2 if "w" is complex. It may only be 1 */
- /* > or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SMIN */
- /* > \verbatim */
- /* > SMIN is REAL */
- /* > The desired lower bound on the singular values of A. This */
- /* > should be a safe distance away from underflow or overflow, */
- /* > say, between (underflow/machine precision) and (machine */
- /* > precision * overflow ). (See BIGNUM and ULP.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CA */
- /* > \verbatim */
- /* > CA is REAL */
- /* > The coefficient c, which A is multiplied by. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,NA) */
- /* > The NA x NA matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. It must be at least NA. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D1 */
- /* > \verbatim */
- /* > D1 is REAL */
- /* > The 1,1 element in the diagonal matrix D. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D2 */
- /* > \verbatim */
- /* > D2 is REAL */
- /* > The 2,2 element in the diagonal matrix D. Not used if NA=1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,NW) */
- /* > The NA x NW matrix B (right-hand side). If NW=2 ("w" is */
- /* > complex), column 1 contains the real part of B and column 2 */
- /* > contains the imaginary part. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. It must be at least NA. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WR */
- /* > \verbatim */
- /* > WR is REAL */
- /* > The real part of the scalar "w". */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WI */
- /* > \verbatim */
- /* > WI is REAL */
- /* > The imaginary part of the scalar "w". Not used if NW=1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is REAL array, dimension (LDX,NW) */
- /* > The NA x NW matrix X (unknowns), as computed by SLALN2. */
- /* > If NW=2 ("w" is complex), on exit, column 1 will contain */
- /* > the real part of X and column 2 will contain the imaginary */
- /* > part. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of X. It must be at least NA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is REAL */
- /* > The scale factor that B must be multiplied by to insure */
- /* > that overflow does not occur when computing X. Thus, */
- /* > (ca A - w D) X will be SCALE*B, not B (ignoring */
- /* > perturbations of A.) It will be at most 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] XNORM */
- /* > \verbatim */
- /* > XNORM is REAL */
- /* > The infinity-norm of X, when X is regarded as an NA x NW */
- /* > real matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > An error flag. It will be set to zero if no error occurs, */
- /* > a negative number if an argument is in error, or a positive */
- /* > number if ca A - w D had to be perturbed. */
- /* > The possible values are: */
- /* > = 0: No error occurred, and (ca A - w D) did not have to be */
- /* > perturbed. */
- /* > = 1: (ca A - w D) had to be perturbed to make its smallest */
- /* > (or only) singular value greater than SMIN. */
- /* > NOTE: In the interests of speed, this routine does not */
- /* > check the inputs for errors. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void slaln2_(logical *ltrans, integer *na, integer *nw, real *
- smin, real *ca, real *a, integer *lda, real *d1, real *d2, real *b,
- integer *ldb, real *wr, real *wi, real *x, integer *ldx, real *scale,
- real *xnorm, integer *info)
- {
- /* Initialized data */
-
- static logical cswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
- static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
- static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
- 4,3,2,1 };
-
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
- real r__1, r__2, r__3, r__4, r__5, r__6;
- static real equiv_0[4], equiv_1[4];
-
- /* Local variables */
- real bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
- integer j;
- real u22abs;
- integer icmax;
- real bnorm, cnorm, smini;
- #define ci (equiv_0)
- #define cr (equiv_1)
- extern real slamch_(char *);
- real bignum;
- extern /* Subroutine */ void sladiv_(real *, real *, real *, real *, real *
- , real *);
- real bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21, ci22, cr21,
- cr22, li21, csi, ui11, lr21, ui12, ui22;
- #define civ (equiv_0)
- real csr, ur11, ur12, ur22;
- #define crv (equiv_1)
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
-
- /* Function Body */
-
- /* Compute BIGNUM */
-
- smlnum = 2.f * slamch_("Safe minimum");
- bignum = 1.f / smlnum;
- smini = f2cmax(*smin,smlnum);
-
- /* Don't check for input errors */
-
- *info = 0;
-
- /* Standard Initializations */
-
- *scale = 1.f;
-
- if (*na == 1) {
-
- /* 1 x 1 (i.e., scalar) system C X = B */
-
- if (*nw == 1) {
-
- /* Real 1x1 system. */
-
- /* C = ca A - w D */
-
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- cnorm = abs(csr);
-
- /* If | C | < SMINI, use C = SMINI */
-
- if (cnorm < smini) {
- csr = smini;
- cnorm = smini;
- *info = 1;
- }
-
- /* Check scaling for X = B / C */
-
- bnorm = (r__1 = b[b_dim1 + 1], abs(r__1));
- if (cnorm < 1.f && bnorm > 1.f) {
- if (bnorm > bignum * cnorm) {
- *scale = 1.f / bnorm;
- }
- }
-
- /* Compute X */
-
- x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
- *xnorm = (r__1 = x[x_dim1 + 1], abs(r__1));
- } else {
-
- /* Complex 1x1 system (w is complex) */
-
- /* C = ca A - w D */
-
- csr = *ca * a[a_dim1 + 1] - *wr * *d1;
- csi = -(*wi) * *d1;
- cnorm = abs(csr) + abs(csi);
-
- /* If | C | < SMINI, use C = SMINI */
-
- if (cnorm < smini) {
- csr = smini;
- csi = 0.f;
- cnorm = smini;
- *info = 1;
- }
-
- /* Check scaling for X = B / C */
-
- bnorm = (r__1 = b[b_dim1 + 1], abs(r__1)) + (r__2 = b[(b_dim1 <<
- 1) + 1], abs(r__2));
- if (cnorm < 1.f && bnorm > 1.f) {
- if (bnorm > bignum * cnorm) {
- *scale = 1.f / bnorm;
- }
- }
-
- /* Compute X */
-
- r__1 = *scale * b[b_dim1 + 1];
- r__2 = *scale * b[(b_dim1 << 1) + 1];
- sladiv_(&r__1, &r__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
- + 1]);
- *xnorm = (r__1 = x[x_dim1 + 1], abs(r__1)) + (r__2 = x[(x_dim1 <<
- 1) + 1], abs(r__2));
- }
-
- } else {
-
- /* 2x2 System */
-
- /* Compute the real part of C = ca A - w D (or ca A**T - w D ) */
-
- cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
- cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
- if (*ltrans) {
- cr[2] = *ca * a[a_dim1 + 2];
- cr[1] = *ca * a[(a_dim1 << 1) + 1];
- } else {
- cr[1] = *ca * a[a_dim1 + 2];
- cr[2] = *ca * a[(a_dim1 << 1) + 1];
- }
-
- if (*nw == 1) {
-
- /* Real 2x2 system (w is real) */
-
- /* Find the largest element in C */
-
- cmax = 0.f;
- icmax = 0;
-
- for (j = 1; j <= 4; ++j) {
- if ((r__1 = crv[j - 1], abs(r__1)) > cmax) {
- cmax = (r__1 = crv[j - 1], abs(r__1));
- icmax = j;
- }
- /* L10: */
- }
-
- /* If norm(C) < SMINI, use SMINI*identity. */
-
- if (cmax < smini) {
- /* Computing MAX */
- r__3 = (r__1 = b[b_dim1 + 1], abs(r__1)), r__4 = (r__2 = b[
- b_dim1 + 2], abs(r__2));
- bnorm = f2cmax(r__3,r__4);
- if (smini < 1.f && bnorm > 1.f) {
- if (bnorm > bignum * smini) {
- *scale = 1.f / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return;
- }
-
- /* Gaussian elimination with complete pivoting. */
-
- ur11 = crv[icmax - 1];
- cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
- ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
- cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
- ur11r = 1.f / ur11;
- lr21 = ur11r * cr21;
- ur22 = cr22 - ur12 * lr21;
-
- /* If smaller pivot < SMINI, use SMINI */
-
- if (abs(ur22) < smini) {
- ur22 = smini;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br1 = b[b_dim1 + 2];
- br2 = b[b_dim1 + 1];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- }
- br2 -= lr21 * br1;
- /* Computing MAX */
- r__2 = (r__1 = br1 * (ur22 * ur11r), abs(r__1)), r__3 = abs(br2);
- bbnd = f2cmax(r__2,r__3);
- if (bbnd > 1.f && abs(ur22) < 1.f) {
- if (bbnd >= bignum * abs(ur22)) {
- *scale = 1.f / bbnd;
- }
- }
-
- xr2 = br2 * *scale / ur22;
- xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
- if (cswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- }
- /* Computing MAX */
- r__1 = abs(xr1), r__2 = abs(xr2);
- *xnorm = f2cmax(r__1,r__2);
-
- /* Further scaling if norm(A) norm(X) > overflow */
-
- if (*xnorm > 1.f && cmax > 1.f) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- } else {
-
- /* Complex 2x2 system (w is complex) */
-
- /* Find the largest element in C */
-
- ci[0] = -(*wi) * *d1;
- ci[1] = 0.f;
- ci[2] = 0.f;
- ci[3] = -(*wi) * *d2;
- cmax = 0.f;
- icmax = 0;
-
- for (j = 1; j <= 4; ++j) {
- if ((r__1 = crv[j - 1], abs(r__1)) + (r__2 = civ[j - 1], abs(
- r__2)) > cmax) {
- cmax = (r__1 = crv[j - 1], abs(r__1)) + (r__2 = civ[j - 1]
- , abs(r__2));
- icmax = j;
- }
- /* L20: */
- }
-
- /* If norm(C) < SMINI, use SMINI*identity. */
-
- if (cmax < smini) {
- /* Computing MAX */
- r__5 = (r__1 = b[b_dim1 + 1], abs(r__1)) + (r__2 = b[(b_dim1
- << 1) + 1], abs(r__2)), r__6 = (r__3 = b[b_dim1 + 2],
- abs(r__3)) + (r__4 = b[(b_dim1 << 1) + 2], abs(r__4));
- bnorm = f2cmax(r__5,r__6);
- if (smini < 1.f && bnorm > 1.f) {
- if (bnorm > bignum * smini) {
- *scale = 1.f / bnorm;
- }
- }
- temp = *scale / smini;
- x[x_dim1 + 1] = temp * b[b_dim1 + 1];
- x[x_dim1 + 2] = temp * b[b_dim1 + 2];
- x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
- x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
- *xnorm = temp * bnorm;
- *info = 1;
- return;
- }
-
- /* Gaussian elimination with complete pivoting. */
-
- ur11 = crv[icmax - 1];
- ui11 = civ[icmax - 1];
- cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
- ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
- ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
- ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
- cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
- ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
- if (icmax == 1 || icmax == 4) {
-
- /* Code when off-diagonals of pivoted C are real */
-
- if (abs(ur11) > abs(ui11)) {
- temp = ui11 / ur11;
- /* Computing 2nd power */
- r__1 = temp;
- ur11r = 1.f / (ur11 * (r__1 * r__1 + 1.f));
- ui11r = -temp * ur11r;
- } else {
- temp = ur11 / ui11;
- /* Computing 2nd power */
- r__1 = temp;
- ui11r = -1.f / (ui11 * (r__1 * r__1 + 1.f));
- ur11r = -temp * ui11r;
- }
- lr21 = cr21 * ur11r;
- li21 = cr21 * ui11r;
- ur12s = ur12 * ur11r;
- ui12s = ur12 * ui11r;
- ur22 = cr22 - ur12 * lr21;
- ui22 = ci22 - ur12 * li21;
- } else {
-
- /* Code when diagonals of pivoted C are real */
-
- ur11r = 1.f / ur11;
- ui11r = 0.f;
- lr21 = cr21 * ur11r;
- li21 = ci21 * ur11r;
- ur12s = ur12 * ur11r;
- ui12s = ui12 * ur11r;
- ur22 = cr22 - ur12 * lr21 + ui12 * li21;
- ui22 = -ur12 * li21 - ui12 * lr21;
- }
- u22abs = abs(ur22) + abs(ui22);
-
- /* If smaller pivot < SMINI, use SMINI */
-
- if (u22abs < smini) {
- ur22 = smini;
- ui22 = 0.f;
- *info = 1;
- }
- if (rswap[icmax - 1]) {
- br2 = b[b_dim1 + 1];
- br1 = b[b_dim1 + 2];
- bi2 = b[(b_dim1 << 1) + 1];
- bi1 = b[(b_dim1 << 1) + 2];
- } else {
- br1 = b[b_dim1 + 1];
- br2 = b[b_dim1 + 2];
- bi1 = b[(b_dim1 << 1) + 1];
- bi2 = b[(b_dim1 << 1) + 2];
- }
- br2 = br2 - lr21 * br1 + li21 * bi1;
- bi2 = bi2 - li21 * br1 - lr21 * bi1;
- /* Computing MAX */
- r__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
- ), r__2 = abs(br2) + abs(bi2);
- bbnd = f2cmax(r__1,r__2);
- if (bbnd > 1.f && u22abs < 1.f) {
- if (bbnd >= bignum * u22abs) {
- *scale = 1.f / bbnd;
- br1 = *scale * br1;
- bi1 = *scale * bi1;
- br2 = *scale * br2;
- bi2 = *scale * bi2;
- }
- }
-
- sladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
- xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
- xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
- if (cswap[icmax - 1]) {
- x[x_dim1 + 1] = xr2;
- x[x_dim1 + 2] = xr1;
- x[(x_dim1 << 1) + 1] = xi2;
- x[(x_dim1 << 1) + 2] = xi1;
- } else {
- x[x_dim1 + 1] = xr1;
- x[x_dim1 + 2] = xr2;
- x[(x_dim1 << 1) + 1] = xi1;
- x[(x_dim1 << 1) + 2] = xi2;
- }
- /* Computing MAX */
- r__1 = abs(xr1) + abs(xi1), r__2 = abs(xr2) + abs(xi2);
- *xnorm = f2cmax(r__1,r__2);
-
- /* Further scaling if norm(A) norm(X) > overflow */
-
- if (*xnorm > 1.f && cmax > 1.f) {
- if (*xnorm > bignum / cmax) {
- temp = cmax / bignum;
- x[x_dim1 + 1] = temp * x[x_dim1 + 1];
- x[x_dim1 + 2] = temp * x[x_dim1 + 2];
- x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
- x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
- *xnorm = temp * *xnorm;
- *scale = temp * *scale;
- }
- }
- }
- }
-
- return;
-
- /* End of SLALN2 */
-
- } /* slaln2_ */
-
- #undef crv
- #undef civ
- #undef cr
- #undef ci
-
|