|
- *> \brief \b SLAIC1 applies one step of incremental condition estimation.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAIC1 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaic1.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaic1.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaic1.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
- *
- * .. Scalar Arguments ..
- * INTEGER J, JOB
- * REAL C, GAMMA, S, SEST, SESTPR
- * ..
- * .. Array Arguments ..
- * REAL W( J ), X( J )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAIC1 applies one step of incremental condition estimation in
- *> its simplest version:
- *>
- *> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
- *> lower triangular matrix L, such that
- *> twonorm(L*x) = sest
- *> Then SLAIC1 computes sestpr, s, c such that
- *> the vector
- *> [ s*x ]
- *> xhat = [ c ]
- *> is an approximate singular vector of
- *> [ L 0 ]
- *> Lhat = [ w**T gamma ]
- *> in the sense that
- *> twonorm(Lhat*xhat) = sestpr.
- *>
- *> Depending on JOB, an estimate for the largest or smallest singular
- *> value is computed.
- *>
- *> Note that [s c]**T and sestpr**2 is an eigenpair of the system
- *>
- *> diag(sest*sest, 0) + [alpha gamma] * [ alpha ]
- *> [ gamma ]
- *>
- *> where alpha = x**T*w.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is INTEGER
- *> = 1: an estimate for the largest singular value is computed.
- *> = 2: an estimate for the smallest singular value is computed.
- *> \endverbatim
- *>
- *> \param[in] J
- *> \verbatim
- *> J is INTEGER
- *> Length of X and W
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension (J)
- *> The j-vector x.
- *> \endverbatim
- *>
- *> \param[in] SEST
- *> \verbatim
- *> SEST is REAL
- *> Estimated singular value of j by j matrix L
- *> \endverbatim
- *>
- *> \param[in] W
- *> \verbatim
- *> W is REAL array, dimension (J)
- *> The j-vector w.
- *> \endverbatim
- *>
- *> \param[in] GAMMA
- *> \verbatim
- *> GAMMA is REAL
- *> The diagonal element gamma.
- *> \endverbatim
- *>
- *> \param[out] SESTPR
- *> \verbatim
- *> SESTPR is REAL
- *> Estimated singular value of (j+1) by (j+1) matrix Lhat.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL
- *> Sine needed in forming xhat.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is REAL
- *> Cosine needed in forming xhat.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE SLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER J, JOB
- REAL C, GAMMA, S, SEST, SESTPR
- * ..
- * .. Array Arguments ..
- REAL W( J ), X( J )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
- REAL HALF, FOUR
- PARAMETER ( HALF = 0.5E0, FOUR = 4.0E0 )
- * ..
- * .. Local Scalars ..
- REAL ABSALP, ABSEST, ABSGAM, ALPHA, B, COSINE, EPS,
- $ NORMA, S1, S2, SINE, T, TEST, TMP, ZETA1, ZETA2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SIGN, SQRT
- * ..
- * .. External Functions ..
- REAL SDOT, SLAMCH
- EXTERNAL SDOT, SLAMCH
- * ..
- * .. Executable Statements ..
- *
- EPS = SLAMCH( 'Epsilon' )
- ALPHA = SDOT( J, X, 1, W, 1 )
- *
- ABSALP = ABS( ALPHA )
- ABSGAM = ABS( GAMMA )
- ABSEST = ABS( SEST )
- *
- IF( JOB.EQ.1 ) THEN
- *
- * Estimating largest singular value
- *
- * special cases
- *
- IF( SEST.EQ.ZERO ) THEN
- S1 = MAX( ABSGAM, ABSALP )
- IF( S1.EQ.ZERO ) THEN
- S = ZERO
- C = ONE
- SESTPR = ZERO
- ELSE
- S = ALPHA / S1
- C = GAMMA / S1
- TMP = SQRT( S*S+C*C )
- S = S / TMP
- C = C / TMP
- SESTPR = S1*TMP
- END IF
- RETURN
- ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
- S = ONE
- C = ZERO
- TMP = MAX( ABSEST, ABSALP )
- S1 = ABSEST / TMP
- S2 = ABSALP / TMP
- SESTPR = TMP*SQRT( S1*S1+S2*S2 )
- RETURN
- ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
- S1 = ABSGAM
- S2 = ABSEST
- IF( S1.LE.S2 ) THEN
- S = ONE
- C = ZERO
- SESTPR = S2
- ELSE
- S = ZERO
- C = ONE
- SESTPR = S1
- END IF
- RETURN
- ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
- S1 = ABSGAM
- S2 = ABSALP
- IF( S1.LE.S2 ) THEN
- TMP = S1 / S2
- S = SQRT( ONE+TMP*TMP )
- SESTPR = S2*S
- C = ( GAMMA / S2 ) / S
- S = SIGN( ONE, ALPHA ) / S
- ELSE
- TMP = S2 / S1
- C = SQRT( ONE+TMP*TMP )
- SESTPR = S1*C
- S = ( ALPHA / S1 ) / C
- C = SIGN( ONE, GAMMA ) / C
- END IF
- RETURN
- ELSE
- *
- * normal case
- *
- ZETA1 = ALPHA / ABSEST
- ZETA2 = GAMMA / ABSEST
- *
- B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
- C = ZETA1*ZETA1
- IF( B.GT.ZERO ) THEN
- T = C / ( B+SQRT( B*B+C ) )
- ELSE
- T = SQRT( B*B+C ) - B
- END IF
- *
- SINE = -ZETA1 / T
- COSINE = -ZETA2 / ( ONE+T )
- TMP = SQRT( SINE*SINE+COSINE*COSINE )
- S = SINE / TMP
- C = COSINE / TMP
- SESTPR = SQRT( T+ONE )*ABSEST
- RETURN
- END IF
- *
- ELSE IF( JOB.EQ.2 ) THEN
- *
- * Estimating smallest singular value
- *
- * special cases
- *
- IF( SEST.EQ.ZERO ) THEN
- SESTPR = ZERO
- IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
- SINE = ONE
- COSINE = ZERO
- ELSE
- SINE = -GAMMA
- COSINE = ALPHA
- END IF
- S1 = MAX( ABS( SINE ), ABS( COSINE ) )
- S = SINE / S1
- C = COSINE / S1
- TMP = SQRT( S*S+C*C )
- S = S / TMP
- C = C / TMP
- RETURN
- ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
- S = ZERO
- C = ONE
- SESTPR = ABSGAM
- RETURN
- ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
- S1 = ABSGAM
- S2 = ABSEST
- IF( S1.LE.S2 ) THEN
- S = ZERO
- C = ONE
- SESTPR = S1
- ELSE
- S = ONE
- C = ZERO
- SESTPR = S2
- END IF
- RETURN
- ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
- S1 = ABSGAM
- S2 = ABSALP
- IF( S1.LE.S2 ) THEN
- TMP = S1 / S2
- C = SQRT( ONE+TMP*TMP )
- SESTPR = ABSEST*( TMP / C )
- S = -( GAMMA / S2 ) / C
- C = SIGN( ONE, ALPHA ) / C
- ELSE
- TMP = S2 / S1
- S = SQRT( ONE+TMP*TMP )
- SESTPR = ABSEST / S
- C = ( ALPHA / S1 ) / S
- S = -SIGN( ONE, GAMMA ) / S
- END IF
- RETURN
- ELSE
- *
- * normal case
- *
- ZETA1 = ALPHA / ABSEST
- ZETA2 = GAMMA / ABSEST
- *
- NORMA = MAX( ONE+ZETA1*ZETA1+ABS( ZETA1*ZETA2 ),
- $ ABS( ZETA1*ZETA2 )+ZETA2*ZETA2 )
- *
- * See if root is closer to zero or to ONE
- *
- TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
- IF( TEST.GE.ZERO ) THEN
- *
- * root is close to zero, compute directly
- *
- B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
- C = ZETA2*ZETA2
- T = C / ( B+SQRT( ABS( B*B-C ) ) )
- SINE = ZETA1 / ( ONE-T )
- COSINE = -ZETA2 / T
- SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
- ELSE
- *
- * root is closer to ONE, shift by that amount
- *
- B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
- C = ZETA1*ZETA1
- IF( B.GE.ZERO ) THEN
- T = -C / ( B+SQRT( B*B+C ) )
- ELSE
- T = B - SQRT( B*B+C )
- END IF
- SINE = -ZETA1 / T
- COSINE = -ZETA2 / ( ONE+T )
- SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
- END IF
- TMP = SQRT( SINE*SINE+COSINE*COSINE )
- S = SINE / TMP
- C = COSINE / TMP
- RETURN
- *
- END IF
- END IF
- RETURN
- *
- * End of SLAIC1
- *
- END
|