|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b SLAG2 computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as nece
- ssary to avoid over-/underflow. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAG2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slag2.f
- "> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slag2.f
- "> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slag2.f
- "> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, */
- /* WR2, WI ) */
-
- /* INTEGER LDA, LDB */
- /* REAL SAFMIN, SCALE1, SCALE2, WI, WR1, WR2 */
- /* REAL A( LDA, * ), B( LDB, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
- /* > problem A - w B, with scaling as necessary to avoid over-/underflow. */
- /* > */
- /* > The scaling factor "s" results in a modified eigenvalue equation */
- /* > */
- /* > s A - w B */
- /* > */
- /* > where s is a non-negative scaling factor chosen so that w, w B, */
- /* > and s A do not overflow and, if possible, do not underflow, either. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, 2) */
- /* > On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
- /* > is less than 1/SAFMIN. Entries less than */
- /* > sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB, 2) */
- /* > On entry, the 2 x 2 upper triangular matrix B. It is */
- /* > assumed that the one-norm of B is less than 1/SAFMIN. The */
- /* > diagonals should be at least sqrt(SAFMIN) times the largest */
- /* > element of B (in absolute value); if a diagonal is smaller */
- /* > than that, then +/- sqrt(SAFMIN) will be used instead of */
- /* > that diagonal. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SAFMIN */
- /* > \verbatim */
- /* > SAFMIN is REAL */
- /* > The smallest positive number s.t. 1/SAFMIN does not */
- /* > overflow. (This should always be SLAMCH('S') -- it is an */
- /* > argument in order to avoid having to call SLAMCH frequently.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE1 */
- /* > \verbatim */
- /* > SCALE1 is REAL */
- /* > A scaling factor used to avoid over-/underflow in the */
- /* > eigenvalue equation which defines the first eigenvalue. If */
- /* > the eigenvalues are complex, then the eigenvalues are */
- /* > ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
- /* > exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
- /* > will always be positive. If the eigenvalues are real, then */
- /* > the first (real) eigenvalue is WR1 / SCALE1 , but this may */
- /* > overflow or underflow, and in fact, SCALE1 may be zero or */
- /* > less than the underflow threshold if the exact eigenvalue */
- /* > is sufficiently large. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE2 */
- /* > \verbatim */
- /* > SCALE2 is REAL */
- /* > A scaling factor used to avoid over-/underflow in the */
- /* > eigenvalue equation which defines the second eigenvalue. If */
- /* > the eigenvalues are complex, then SCALE2=SCALE1. If the */
- /* > eigenvalues are real, then the second (real) eigenvalue is */
- /* > WR2 / SCALE2 , but this may overflow or underflow, and in */
- /* > fact, SCALE2 may be zero or less than the underflow */
- /* > threshold if the exact eigenvalue is sufficiently large. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR1 */
- /* > \verbatim */
- /* > WR1 is REAL */
- /* > If the eigenvalue is real, then WR1 is SCALE1 times the */
- /* > eigenvalue closest to the (2,2) element of A B**(-1). If the */
- /* > eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
- /* > part of the eigenvalues. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WR2 */
- /* > \verbatim */
- /* > WR2 is REAL */
- /* > If the eigenvalue is real, then WR2 is SCALE2 times the */
- /* > other eigenvalue. If the eigenvalue is complex, then */
- /* > WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WI */
- /* > \verbatim */
- /* > WI is REAL */
- /* > If the eigenvalue is real, then WI is zero. If the */
- /* > eigenvalue is complex, then WI is SCALE1 times the imaginary */
- /* > part of the eigenvalues. WI will always be non-negative. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void slag2_(real *a, integer *lda, real *b, integer *ldb,
- real *safmin, real *scale1, real *scale2, real *wr1, real *wr2, real *
- wi)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset;
- real r__1, r__2, r__3, r__4, r__5, r__6;
-
- /* Local variables */
- real diff, bmin, wbig, wabs, wdet, r__, binv11, binv22, discr, anorm,
- bnorm, bsize, shift, c1, c2, c3, c4, c5, rtmin, rtmax, wsize, s1,
- s2, a11, a12, a21, a22, b11, b12, b22, ascale, bscale, pp, qq, ss,
- wscale, safmax, wsmall, as11, as12, as22, sum, abi22;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
-
- /* Function Body */
- rtmin = sqrt(*safmin);
- rtmax = 1.f / rtmin;
- safmax = 1.f / *safmin;
-
- /* Scale A */
-
- /* Computing MAX */
- r__5 = (r__1 = a[a_dim1 + 1], abs(r__1)) + (r__2 = a[a_dim1 + 2], abs(
- r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], abs(r__3)) + (r__4 =
- a[(a_dim1 << 1) + 2], abs(r__4)), r__5 = f2cmax(r__5,r__6);
- anorm = f2cmax(r__5,*safmin);
- ascale = 1.f / anorm;
- a11 = ascale * a[a_dim1 + 1];
- a21 = ascale * a[a_dim1 + 2];
- a12 = ascale * a[(a_dim1 << 1) + 1];
- a22 = ascale * a[(a_dim1 << 1) + 2];
-
- /* Perturb B if necessary to insure non-singularity */
-
- b11 = b[b_dim1 + 1];
- b12 = b[(b_dim1 << 1) + 1];
- b22 = b[(b_dim1 << 1) + 2];
- /* Computing MAX */
- r__1 = abs(b11), r__2 = abs(b12), r__1 = f2cmax(r__1,r__2), r__2 = abs(b22),
- r__1 = f2cmax(r__1,r__2);
- bmin = rtmin * f2cmax(r__1,rtmin);
- if (abs(b11) < bmin) {
- b11 = r_sign(&bmin, &b11);
- }
- if (abs(b22) < bmin) {
- b22 = r_sign(&bmin, &b22);
- }
-
- /* Scale B */
-
- /* Computing MAX */
- r__1 = abs(b11), r__2 = abs(b12) + abs(b22), r__1 = f2cmax(r__1,r__2);
- bnorm = f2cmax(r__1,*safmin);
- /* Computing MAX */
- r__1 = abs(b11), r__2 = abs(b22);
- bsize = f2cmax(r__1,r__2);
- bscale = 1.f / bsize;
- b11 *= bscale;
- b12 *= bscale;
- b22 *= bscale;
-
- /* Compute larger eigenvalue by method described by C. van Loan */
-
- /* ( AS is A shifted by -SHIFT*B ) */
-
- binv11 = 1.f / b11;
- binv22 = 1.f / b22;
- s1 = a11 * binv11;
- s2 = a22 * binv22;
- if (abs(s1) <= abs(s2)) {
- as12 = a12 - s1 * b12;
- as22 = a22 - s1 * b22;
- ss = a21 * (binv11 * binv22);
- abi22 = as22 * binv22 - ss * b12;
- pp = abi22 * .5f;
- shift = s1;
- } else {
- as12 = a12 - s2 * b12;
- as11 = a11 - s2 * b11;
- ss = a21 * (binv11 * binv22);
- abi22 = -ss * b12;
- pp = (as11 * binv11 + abi22) * .5f;
- shift = s2;
- }
- qq = ss * as12;
- if ((r__1 = pp * rtmin, abs(r__1)) >= 1.f) {
- /* Computing 2nd power */
- r__1 = rtmin * pp;
- discr = r__1 * r__1 + qq * *safmin;
- r__ = sqrt((abs(discr))) * rtmax;
- } else {
- /* Computing 2nd power */
- r__1 = pp;
- if (r__1 * r__1 + abs(qq) <= *safmin) {
- /* Computing 2nd power */
- r__1 = rtmax * pp;
- discr = r__1 * r__1 + qq * safmax;
- r__ = sqrt((abs(discr))) * rtmin;
- } else {
- /* Computing 2nd power */
- r__1 = pp;
- discr = r__1 * r__1 + qq;
- r__ = sqrt((abs(discr)));
- }
- }
-
- /* Note: the test of R in the following IF is to cover the case when */
- /* DISCR is small and negative and is flushed to zero during */
- /* the calculation of R. On machines which have a consistent */
- /* flush-to-zero threshold and handle numbers above that */
- /* threshold correctly, it would not be necessary. */
-
- if (discr >= 0.f || r__ == 0.f) {
- sum = pp + r_sign(&r__, &pp);
- diff = pp - r_sign(&r__, &pp);
- wbig = shift + sum;
-
- /* Compute smaller eigenvalue */
-
- wsmall = shift + diff;
- /* Computing MAX */
- r__1 = abs(wsmall);
- if (abs(wbig) * .5f > f2cmax(r__1,*safmin)) {
- wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
- wsmall = wdet / wbig;
- }
-
- /* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
- /* for WR1. */
-
- if (pp > abi22) {
- *wr1 = f2cmin(wbig,wsmall);
- *wr2 = f2cmax(wbig,wsmall);
- } else {
- *wr1 = f2cmax(wbig,wsmall);
- *wr2 = f2cmin(wbig,wsmall);
- }
- *wi = 0.f;
- } else {
-
- /* Complex eigenvalues */
-
- *wr1 = shift + pp;
- *wr2 = *wr1;
- *wi = r__;
- }
-
- /* Further scaling to avoid underflow and overflow in computing */
- /* SCALE1 and overflow in computing w*B. */
-
- /* This scale factor (WSCALE) is bounded from above using C1 and C2, */
- /* and from below using C3 and C4. */
- /* C1 implements the condition s A must never overflow. */
- /* C2 implements the condition w B must never overflow. */
- /* C3, with C2, */
- /* implement the condition that s A - w B must never overflow. */
- /* C4 implements the condition s should not underflow. */
- /* C5 implements the condition f2cmax(s,|w|) should be at least 2. */
-
- c1 = bsize * (*safmin * f2cmax(1.f,ascale));
- c2 = *safmin * f2cmax(1.f,bnorm);
- c3 = bsize * *safmin;
- if (ascale <= 1.f && bsize <= 1.f) {
- /* Computing MIN */
- r__1 = 1.f, r__2 = ascale / *safmin * bsize;
- c4 = f2cmin(r__1,r__2);
- } else {
- c4 = 1.f;
- }
- if (ascale <= 1.f || bsize <= 1.f) {
- /* Computing MIN */
- r__1 = 1.f, r__2 = ascale * bsize;
- c5 = f2cmin(r__1,r__2);
- } else {
- c5 = 1.f;
- }
-
- /* Scale first eigenvalue */
-
- wabs = abs(*wr1) + abs(*wi);
- /* Computing MAX */
- /* Computing MIN */
- r__3 = c4, r__4 = f2cmax(wabs,c5) * .5f;
- r__1 = f2cmax(*safmin,c1), r__2 = (wabs * c2 + c3) * 1.0000100000000001f,
- r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,r__4);
- wsize = f2cmax(r__1,r__2);
- if (wsize != 1.f) {
- wscale = 1.f / wsize;
- if (wsize > 1.f) {
- *scale1 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
- } else {
- *scale1 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
- }
- *wr1 *= wscale;
- if (*wi != 0.f) {
- *wi *= wscale;
- *wr2 = *wr1;
- *scale2 = *scale1;
- }
- } else {
- *scale1 = ascale * bsize;
- *scale2 = *scale1;
- }
-
- /* Scale second eigenvalue (if real) */
-
- if (*wi == 0.f) {
- /* Computing MAX */
- /* Computing MIN */
- /* Computing MAX */
- r__5 = abs(*wr2);
- r__3 = c4, r__4 = f2cmax(r__5,c5) * .5f;
- r__1 = f2cmax(*safmin,c1), r__2 = (abs(*wr2) * c2 + c3) *
- 1.0000100000000001f, r__1 = f2cmax(r__1,r__2), r__2 = f2cmin(r__3,
- r__4);
- wsize = f2cmax(r__1,r__2);
- if (wsize != 1.f) {
- wscale = 1.f / wsize;
- if (wsize > 1.f) {
- *scale2 = f2cmax(ascale,bsize) * wscale * f2cmin(ascale,bsize);
- } else {
- *scale2 = f2cmin(ascale,bsize) * wscale * f2cmax(ascale,bsize);
- }
- *wr2 *= wscale;
- } else {
- *scale2 = ascale * bsize;
- }
- }
-
- /* End of SLAG2 */
-
- return;
- } /* slag2_ */
|