|
- *> \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAEIN + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaein.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaein.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaein.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
- * LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL NOINIT, RIGHTV
- * INTEGER INFO, LDB, LDH, N
- * REAL BIGNUM, EPS3, SMLNUM, WI, WR
- * ..
- * .. Array Arguments ..
- * REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAEIN uses inverse iteration to find a right or left eigenvector
- *> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
- *> matrix H.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] RIGHTV
- *> \verbatim
- *> RIGHTV is LOGICAL
- *> = .TRUE. : compute right eigenvector;
- *> = .FALSE.: compute left eigenvector.
- *> \endverbatim
- *>
- *> \param[in] NOINIT
- *> \verbatim
- *> NOINIT is LOGICAL
- *> = .TRUE. : no initial vector supplied in (VR,VI).
- *> = .FALSE.: initial vector supplied in (VR,VI).
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix H. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] H
- *> \verbatim
- *> H is REAL array, dimension (LDH,N)
- *> The upper Hessenberg matrix H.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> The leading dimension of the array H. LDH >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] WR
- *> \verbatim
- *> WR is REAL
- *> \endverbatim
- *>
- *> \param[in] WI
- *> \verbatim
- *> WI is REAL
- *> The real and imaginary parts of the eigenvalue of H whose
- *> corresponding right or left eigenvector is to be computed.
- *> \endverbatim
- *>
- *> \param[in,out] VR
- *> \verbatim
- *> VR is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[in,out] VI
- *> \verbatim
- *> VI is REAL array, dimension (N)
- *> On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
- *> a real starting vector for inverse iteration using the real
- *> eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
- *> must contain the real and imaginary parts of a complex
- *> starting vector for inverse iteration using the complex
- *> eigenvalue (WR,WI); otherwise VR and VI need not be set.
- *> On exit, if WI = 0.0 (real eigenvalue), VR contains the
- *> computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
- *> VR and VI contain the real and imaginary parts of the
- *> computed complex eigenvector. The eigenvector is normalized
- *> so that the component of largest magnitude has magnitude 1;
- *> here the magnitude of a complex number (x,y) is taken to be
- *> |x| + |y|.
- *> VI is not referenced if WI = 0.0.
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= N+1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[in] EPS3
- *> \verbatim
- *> EPS3 is REAL
- *> A small machine-dependent value which is used to perturb
- *> close eigenvalues, and to replace zero pivots.
- *> \endverbatim
- *>
- *> \param[in] SMLNUM
- *> \verbatim
- *> SMLNUM is REAL
- *> A machine-dependent value close to the underflow threshold.
- *> \endverbatim
- *>
- *> \param[in] BIGNUM
- *> \verbatim
- *> BIGNUM is REAL
- *> A machine-dependent value close to the overflow threshold.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> = 1: inverse iteration did not converge; VR is set to the
- *> last iterate, and so is VI if WI.ne.0.0.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
- $ LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL NOINIT, RIGHTV
- INTEGER INFO, LDB, LDH, N
- REAL BIGNUM, EPS3, SMLNUM, WI, WR
- * ..
- * .. Array Arguments ..
- REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TENTH
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TENTH = 1.0E-1 )
- * ..
- * .. Local Scalars ..
- CHARACTER NORMIN, TRANS
- INTEGER I, I1, I2, I3, IERR, ITS, J
- REAL ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
- $ REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
- $ W1, X, XI, XR, Y
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SASUM, SLAPY2, SNRM2
- EXTERNAL ISAMAX, SASUM, SLAPY2, SNRM2
- * ..
- * .. External Subroutines ..
- EXTERNAL SLADIV, SLATRS, SSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, REAL, SQRT
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- *
- * GROWTO is the threshold used in the acceptance test for an
- * eigenvector.
- *
- ROOTN = SQRT( REAL( N ) )
- GROWTO = TENTH / ROOTN
- NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
- *
- * Form B = H - (WR,WI)*I (except that the subdiagonal elements and
- * the imaginary parts of the diagonal elements are not stored).
- *
- DO 20 J = 1, N
- DO 10 I = 1, J - 1
- B( I, J ) = H( I, J )
- 10 CONTINUE
- B( J, J ) = H( J, J ) - WR
- 20 CONTINUE
- *
- IF( WI.EQ.ZERO ) THEN
- *
- * Real eigenvalue.
- *
- IF( NOINIT ) THEN
- *
- * Set initial vector.
- *
- DO 30 I = 1, N
- VR( I ) = EPS3
- 30 CONTINUE
- ELSE
- *
- * Scale supplied initial vector.
- *
- VNORM = SNRM2( N, VR, 1 )
- CALL SSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
- $ 1 )
- END IF
- *
- IF( RIGHTV ) THEN
- *
- * LU decomposition with partial pivoting of B, replacing zero
- * pivots by EPS3.
- *
- DO 60 I = 1, N - 1
- EI = H( I+1, I )
- IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
- *
- * Interchange rows and eliminate.
- *
- X = B( I, I ) / EI
- B( I, I ) = EI
- DO 40 J = I + 1, N
- TEMP = B( I+1, J )
- B( I+1, J ) = B( I, J ) - X*TEMP
- B( I, J ) = TEMP
- 40 CONTINUE
- ELSE
- *
- * Eliminate without interchange.
- *
- IF( B( I, I ).EQ.ZERO )
- $ B( I, I ) = EPS3
- X = EI / B( I, I )
- IF( X.NE.ZERO ) THEN
- DO 50 J = I + 1, N
- B( I+1, J ) = B( I+1, J ) - X*B( I, J )
- 50 CONTINUE
- END IF
- END IF
- 60 CONTINUE
- IF( B( N, N ).EQ.ZERO )
- $ B( N, N ) = EPS3
- *
- TRANS = 'N'
- *
- ELSE
- *
- * UL decomposition with partial pivoting of B, replacing zero
- * pivots by EPS3.
- *
- DO 90 J = N, 2, -1
- EJ = H( J, J-1 )
- IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
- *
- * Interchange columns and eliminate.
- *
- X = B( J, J ) / EJ
- B( J, J ) = EJ
- DO 70 I = 1, J - 1
- TEMP = B( I, J-1 )
- B( I, J-1 ) = B( I, J ) - X*TEMP
- B( I, J ) = TEMP
- 70 CONTINUE
- ELSE
- *
- * Eliminate without interchange.
- *
- IF( B( J, J ).EQ.ZERO )
- $ B( J, J ) = EPS3
- X = EJ / B( J, J )
- IF( X.NE.ZERO ) THEN
- DO 80 I = 1, J - 1
- B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
- 80 CONTINUE
- END IF
- END IF
- 90 CONTINUE
- IF( B( 1, 1 ).EQ.ZERO )
- $ B( 1, 1 ) = EPS3
- *
- TRANS = 'T'
- *
- END IF
- *
- NORMIN = 'N'
- DO 110 ITS = 1, N
- *
- * Solve U*x = scale*v for a right eigenvector
- * or U**T*x = scale*v for a left eigenvector,
- * overwriting x on v.
- *
- CALL SLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
- $ VR, SCALE, WORK, IERR )
- NORMIN = 'Y'
- *
- * Test for sufficient growth in the norm of v.
- *
- VNORM = SASUM( N, VR, 1 )
- IF( VNORM.GE.GROWTO*SCALE )
- $ GO TO 120
- *
- * Choose new orthogonal starting vector and try again.
- *
- TEMP = EPS3 / ( ROOTN+ONE )
- VR( 1 ) = EPS3
- DO 100 I = 2, N
- VR( I ) = TEMP
- 100 CONTINUE
- VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
- 110 CONTINUE
- *
- * Failure to find eigenvector in N iterations.
- *
- INFO = 1
- *
- 120 CONTINUE
- *
- * Normalize eigenvector.
- *
- I = ISAMAX( N, VR, 1 )
- CALL SSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
- ELSE
- *
- * Complex eigenvalue.
- *
- IF( NOINIT ) THEN
- *
- * Set initial vector.
- *
- DO 130 I = 1, N
- VR( I ) = EPS3
- VI( I ) = ZERO
- 130 CONTINUE
- ELSE
- *
- * Scale supplied initial vector.
- *
- NORM = SLAPY2( SNRM2( N, VR, 1 ), SNRM2( N, VI, 1 ) )
- REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
- CALL SSCAL( N, REC, VR, 1 )
- CALL SSCAL( N, REC, VI, 1 )
- END IF
- *
- IF( RIGHTV ) THEN
- *
- * LU decomposition with partial pivoting of B, replacing zero
- * pivots by EPS3.
- *
- * The imaginary part of the (i,j)-th element of U is stored in
- * B(j+1,i).
- *
- B( 2, 1 ) = -WI
- DO 140 I = 2, N
- B( I+1, 1 ) = ZERO
- 140 CONTINUE
- *
- DO 170 I = 1, N - 1
- ABSBII = SLAPY2( B( I, I ), B( I+1, I ) )
- EI = H( I+1, I )
- IF( ABSBII.LT.ABS( EI ) ) THEN
- *
- * Interchange rows and eliminate.
- *
- XR = B( I, I ) / EI
- XI = B( I+1, I ) / EI
- B( I, I ) = EI
- B( I+1, I ) = ZERO
- DO 150 J = I + 1, N
- TEMP = B( I+1, J )
- B( I+1, J ) = B( I, J ) - XR*TEMP
- B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
- B( I, J ) = TEMP
- B( J+1, I ) = ZERO
- 150 CONTINUE
- B( I+2, I ) = -WI
- B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
- B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
- ELSE
- *
- * Eliminate without interchanging rows.
- *
- IF( ABSBII.EQ.ZERO ) THEN
- B( I, I ) = EPS3
- B( I+1, I ) = ZERO
- ABSBII = EPS3
- END IF
- EI = ( EI / ABSBII ) / ABSBII
- XR = B( I, I )*EI
- XI = -B( I+1, I )*EI
- DO 160 J = I + 1, N
- B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
- $ XI*B( J+1, I )
- B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
- 160 CONTINUE
- B( I+2, I+1 ) = B( I+2, I+1 ) - WI
- END IF
- *
- * Compute 1-norm of offdiagonal elements of i-th row.
- *
- WORK( I ) = SASUM( N-I, B( I, I+1 ), LDB ) +
- $ SASUM( N-I, B( I+2, I ), 1 )
- 170 CONTINUE
- IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
- $ B( N, N ) = EPS3
- WORK( N ) = ZERO
- *
- I1 = N
- I2 = 1
- I3 = -1
- ELSE
- *
- * UL decomposition with partial pivoting of conjg(B),
- * replacing zero pivots by EPS3.
- *
- * The imaginary part of the (i,j)-th element of U is stored in
- * B(j+1,i).
- *
- B( N+1, N ) = WI
- DO 180 J = 1, N - 1
- B( N+1, J ) = ZERO
- 180 CONTINUE
- *
- DO 210 J = N, 2, -1
- EJ = H( J, J-1 )
- ABSBJJ = SLAPY2( B( J, J ), B( J+1, J ) )
- IF( ABSBJJ.LT.ABS( EJ ) ) THEN
- *
- * Interchange columns and eliminate
- *
- XR = B( J, J ) / EJ
- XI = B( J+1, J ) / EJ
- B( J, J ) = EJ
- B( J+1, J ) = ZERO
- DO 190 I = 1, J - 1
- TEMP = B( I, J-1 )
- B( I, J-1 ) = B( I, J ) - XR*TEMP
- B( J, I ) = B( J+1, I ) - XI*TEMP
- B( I, J ) = TEMP
- B( J+1, I ) = ZERO
- 190 CONTINUE
- B( J+1, J-1 ) = WI
- B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
- B( J, J-1 ) = B( J, J-1 ) - XR*WI
- ELSE
- *
- * Eliminate without interchange.
- *
- IF( ABSBJJ.EQ.ZERO ) THEN
- B( J, J ) = EPS3
- B( J+1, J ) = ZERO
- ABSBJJ = EPS3
- END IF
- EJ = ( EJ / ABSBJJ ) / ABSBJJ
- XR = B( J, J )*EJ
- XI = -B( J+1, J )*EJ
- DO 200 I = 1, J - 1
- B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
- $ XI*B( J+1, I )
- B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
- 200 CONTINUE
- B( J, J-1 ) = B( J, J-1 ) + WI
- END IF
- *
- * Compute 1-norm of offdiagonal elements of j-th column.
- *
- WORK( J ) = SASUM( J-1, B( 1, J ), 1 ) +
- $ SASUM( J-1, B( J+1, 1 ), LDB )
- 210 CONTINUE
- IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
- $ B( 1, 1 ) = EPS3
- WORK( 1 ) = ZERO
- *
- I1 = 1
- I2 = N
- I3 = 1
- END IF
- *
- DO 270 ITS = 1, N
- SCALE = ONE
- VMAX = ONE
- VCRIT = BIGNUM
- *
- * Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
- * or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
- * overwriting (xr,xi) on (vr,vi).
- *
- DO 250 I = I1, I2, I3
- *
- IF( WORK( I ).GT.VCRIT ) THEN
- REC = ONE / VMAX
- CALL SSCAL( N, REC, VR, 1 )
- CALL SSCAL( N, REC, VI, 1 )
- SCALE = SCALE*REC
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- *
- XR = VR( I )
- XI = VI( I )
- IF( RIGHTV ) THEN
- DO 220 J = I + 1, N
- XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
- XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
- 220 CONTINUE
- ELSE
- DO 230 J = 1, I - 1
- XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
- XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
- 230 CONTINUE
- END IF
- *
- W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
- IF( W.GT.SMLNUM ) THEN
- IF( W.LT.ONE ) THEN
- W1 = ABS( XR ) + ABS( XI )
- IF( W1.GT.W*BIGNUM ) THEN
- REC = ONE / W1
- CALL SSCAL( N, REC, VR, 1 )
- CALL SSCAL( N, REC, VI, 1 )
- XR = VR( I )
- XI = VI( I )
- SCALE = SCALE*REC
- VMAX = VMAX*REC
- END IF
- END IF
- *
- * Divide by diagonal element of B.
- *
- CALL SLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
- $ VI( I ) )
- VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
- VCRIT = BIGNUM / VMAX
- ELSE
- DO 240 J = 1, N
- VR( J ) = ZERO
- VI( J ) = ZERO
- 240 CONTINUE
- VR( I ) = ONE
- VI( I ) = ONE
- SCALE = ZERO
- VMAX = ONE
- VCRIT = BIGNUM
- END IF
- 250 CONTINUE
- *
- * Test for sufficient growth in the norm of (VR,VI).
- *
- VNORM = SASUM( N, VR, 1 ) + SASUM( N, VI, 1 )
- IF( VNORM.GE.GROWTO*SCALE )
- $ GO TO 280
- *
- * Choose a new orthogonal starting vector and try again.
- *
- Y = EPS3 / ( ROOTN+ONE )
- VR( 1 ) = EPS3
- VI( 1 ) = ZERO
- *
- DO 260 I = 2, N
- VR( I ) = Y
- VI( I ) = ZERO
- 260 CONTINUE
- VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
- 270 CONTINUE
- *
- * Failure to find eigenvector in N iterations
- *
- INFO = 1
- *
- 280 CONTINUE
- *
- * Normalize eigenvector.
- *
- VNORM = ZERO
- DO 290 I = 1, N
- VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
- 290 CONTINUE
- CALL SSCAL( N, ONE / VNORM, VR, 1 )
- CALL SSCAL( N, ONE / VNORM, VI, 1 )
- *
- END IF
- *
- RETURN
- *
- * End of SLAEIN
- *
- END
|