|
- *> \brief \b SLA_GBAMV performs a matrix-vector operation to calculate error bounds.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLA_GBAMV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gbamv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gbamv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gbamv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
- * INCX, BETA, Y, INCY )
- *
- * .. Scalar Arguments ..
- * REAL ALPHA, BETA
- * INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
- * ..
- * .. Array Arguments ..
- * REAL AB( LDAB, * ), X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLA_GBAMV performs one of the matrix-vector operations
- *>
- *> y := alpha*abs(A)*abs(x) + beta*abs(y),
- *> or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
- *>
- *> where alpha and beta are scalars, x and y are vectors and A is an
- *> m by n matrix.
- *>
- *> This function is primarily used in calculating error bounds.
- *> To protect against underflow during evaluation, components in
- *> the resulting vector are perturbed away from zero by (N+1)
- *> times the underflow threshold. To prevent unnecessarily large
- *> errors for block-structure embedded in general matrices,
- *> "symbolically" zero components are not perturbed. A zero
- *> entry is considered "symbolic" if all multiplications involved
- *> in computing that entry have at least one zero multiplicand.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is INTEGER
- *> On entry, TRANS specifies the operation to be performed as
- *> follows:
- *>
- *> BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
- *> BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
- *> BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
- *>
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> On entry, M specifies the number of rows of the matrix A.
- *> M must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> On entry, N specifies the number of columns of the matrix A.
- *> N must be at least zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] KL
- *> \verbatim
- *> KL is INTEGER
- *> The number of subdiagonals within the band of A. KL >= 0.
- *> \endverbatim
- *>
- *> \param[in] KU
- *> \verbatim
- *> KU is INTEGER
- *> The number of superdiagonals within the band of A. KU >= 0.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is REAL
- *> On entry, ALPHA specifies the scalar alpha.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is REAL array, dimension ( LDAB, n )
- *> Before entry, the leading m by n part of the array AB must
- *> contain the matrix of coefficients.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> On entry, LDA specifies the first dimension of AB as declared
- *> in the calling (sub) program. LDAB must be at least
- *> max( 1, m ).
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] X
- *> \verbatim
- *> X is REAL array, dimension
- *> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- *> and at least
- *> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- *> Before entry, the incremented array X must contain the
- *> vector x.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] INCX
- *> \verbatim
- *> INCX is INTEGER
- *> On entry, INCX specifies the increment for the elements of
- *> X. INCX must not be zero.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is REAL
- *> On entry, BETA specifies the scalar beta. When BETA is
- *> supplied as zero then Y need not be set on input.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[in,out] Y
- *> \verbatim
- *> Y is REAL array, dimension
- *> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- *> and at least
- *> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- *> Before entry with BETA non-zero, the incremented array Y
- *> must contain the vector y. On exit, Y is overwritten by the
- *> updated vector y.
- *> \endverbatim
- *>
- *> \param[in] INCY
- *> \verbatim
- *> INCY is INTEGER
- *> On entry, INCY specifies the increment for the elements of
- *> Y. INCY must not be zero.
- *> Unchanged on exit.
- *>
- *> Level 2 Blas routine.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realGBcomputational
- *
- * =====================================================================
- SUBROUTINE SLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
- $ INCX, BETA, Y, INCY )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- REAL ALPHA, BETA
- INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
- * ..
- * .. Array Arguments ..
- REAL AB( LDAB, * ), X( * ), Y( * )
- * ..
- *
- * =====================================================================
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL SYMB_ZERO
- REAL TEMP, SAFE1
- INTEGER I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA, SLAMCH
- REAL SLAMCH
- * ..
- * .. External Functions ..
- EXTERNAL ILATRANS
- INTEGER ILATRANS
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, ABS, SIGN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
- $ .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
- $ .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
- INFO = 1
- ELSE IF( M.LT.0 )THEN
- INFO = 2
- ELSE IF( N.LT.0 )THEN
- INFO = 3
- ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
- INFO = 4
- ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
- INFO = 5
- ELSE IF( LDAB.LT.KL+KU+1 )THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 8
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'SLA_GBAMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- *
- * Set LENX and LENY, the lengths of the vectors x and y, and set
- * up the start points in X and Y.
- *
- IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( LENX - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( LENY - 1 )*INCY
- END IF
- *
- * Set SAFE1 essentially to be the underflow threshold times the
- * number of additions in each row.
- *
- SAFE1 = SLAMCH( 'Safe minimum' )
- SAFE1 = (N+1)*SAFE1
- *
- * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
- *
- * The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
- * the inexact flag. Still doesn't help change the iteration order
- * to per-column.
- *
- KD = KU + 1
- KE = KL + 1
- IY = KY
- IF ( INCX.EQ.1 ) THEN
- IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
- DO I = 1, LENY
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
- TEMP = ABS( AB( KD+I-J, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
- IY = IY + INCY
- END DO
- ELSE
- DO I = 1, LENY
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
- TEMP = ABS( AB( KE-I+J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
- IY = IY + INCY
- END DO
- END IF
- ELSE
- IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
- DO I = 1, LENY
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- JX = KX
- DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
- TEMP = ABS( AB( KD+I-J, J ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- ELSE
- DO I = 1, LENY
- IF ( BETA .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- Y( IY ) = 0.0
- ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
- SYMB_ZERO = .TRUE.
- ELSE
- SYMB_ZERO = .FALSE.
- Y( IY ) = BETA * ABS( Y( IY ) )
- END IF
- IF ( ALPHA .NE. ZERO ) THEN
- JX = KX
- DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
- TEMP = ABS( AB( KE-I+J, I ) )
- SYMB_ZERO = SYMB_ZERO .AND.
- $ ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
-
- Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
- JX = JX + INCX
- END DO
- END IF
-
- IF ( .NOT.SYMB_ZERO )
- $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
-
- IY = IY + INCY
- END DO
- END IF
-
- END IF
- *
- RETURN
- *
- * End of SLA_GBAMV
- *
- END
|