|
- *> \brief \b SGGGLM
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGGGLM + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggglm.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggglm.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggglm.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
- * $ X( * ), Y( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGGGLM solves a general Gauss-Markov linear model (GLM) problem:
- *>
- *> minimize || y ||_2 subject to d = A*x + B*y
- *> x
- *>
- *> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
- *> given N-vector. It is assumed that M <= N <= M+P, and
- *>
- *> rank(A) = M and rank( A B ) = N.
- *>
- *> Under these assumptions, the constrained equation is always
- *> consistent, and there is a unique solution x and a minimal 2-norm
- *> solution y, which is obtained using a generalized QR factorization
- *> of the matrices (A, B) given by
- *>
- *> A = Q*(R), B = Q*T*Z.
- *> (0)
- *>
- *> In particular, if matrix B is square nonsingular, then the problem
- *> GLM is equivalent to the following weighted linear least squares
- *> problem
- *>
- *> minimize || inv(B)*(d-A*x) ||_2
- *> x
- *>
- *> where inv(B) denotes the inverse of B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns of the matrix A. 0 <= M <= N.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of columns of the matrix B. P >= N-M.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,M)
- *> On entry, the N-by-M matrix A.
- *> On exit, the upper triangular part of the array A contains
- *> the M-by-M upper triangular matrix R.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,P)
- *> On entry, the N-by-P matrix B.
- *> On exit, if N <= P, the upper triangle of the subarray
- *> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
- *> if N > P, the elements on and above the (N-P)th subdiagonal
- *> contain the N-by-P upper trapezoidal matrix T.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, D is the left hand side of the GLM equation.
- *> On exit, D is destroyed.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] Y
- *> \verbatim
- *> Y is REAL array, dimension (P)
- *>
- *> On exit, X and Y are the solutions of the GLM problem.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N+M+P).
- *> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
- *> where NB is an upper bound for the optimal blocksizes for
- *> SGEQRF, SGERQF, SORMQR and SORMRQ.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> = 1: the upper triangular factor R associated with A in the
- *> generalized QR factorization of the pair (A, B) is
- *> singular, so that rank(A) < M; the least squares
- *> solution could not be computed.
- *> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
- *> factor T associated with B in the generalized QR
- *> factorization of the pair (A, B) is singular, so that
- *> rank( A B ) < N; the least squares solution could not
- *> be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHEReigen
- *
- * =====================================================================
- SUBROUTINE SGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LWORK, M, N, P
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
- $ X( * ), Y( * )
- * ..
- *
- * ===================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
- $ NB4, NP
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SGEMV, SGGQRF, SORMQR, SORMRQ, STRTRS,
- $ XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC INT, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- NP = MIN( N, P )
- LQUERY = ( LWORK.EQ.-1 )
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
- INFO = -2
- ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- *
- * Calculate workspace
- *
- IF( INFO.EQ.0) THEN
- IF( N.EQ.0 ) THEN
- LWKMIN = 1
- LWKOPT = 1
- ELSE
- NB1 = ILAENV( 1, 'SGEQRF', ' ', N, M, -1, -1 )
- NB2 = ILAENV( 1, 'SGERQF', ' ', N, M, -1, -1 )
- NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 )
- NB4 = ILAENV( 1, 'SORMRQ', ' ', N, M, P, -1 )
- NB = MAX( NB1, NB2, NB3, NB4 )
- LWKMIN = M + N + P
- LWKOPT = M + NP + MAX( N, P )*NB
- END IF
- WORK( 1 ) = LWKOPT
- *
- IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
- INFO = -12
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGGGLM', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- DO I = 1, M
- X(I) = ZERO
- END DO
- DO I = 1, P
- Y(I) = ZERO
- END DO
- RETURN
- END IF
- *
- * Compute the GQR factorization of matrices A and B:
- *
- * Q**T*A = ( R11 ) M, Q**T*B*Z**T = ( T11 T12 ) M
- * ( 0 ) N-M ( 0 T22 ) N-M
- * M M+P-N N-M
- *
- * where R11 and T22 are upper triangular, and Q and Z are
- * orthogonal.
- *
- CALL SGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
- $ WORK( M+NP+1 ), LWORK-M-NP, INFO )
- LOPT = INT( WORK( M+NP+1 ) )
- *
- * Update left-hand-side vector d = Q**T*d = ( d1 ) M
- * ( d2 ) N-M
- *
- CALL SORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
- $ MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
- LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
- *
- * Solve T22*y2 = d2 for y2
- *
- IF( N.GT.M ) THEN
- CALL STRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
- $ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
- *
- IF( INFO.GT.0 ) THEN
- INFO = 1
- RETURN
- END IF
- *
- CALL SCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
- END IF
- *
- * Set y1 = 0
- *
- DO 10 I = 1, M + P - N
- Y( I ) = ZERO
- 10 CONTINUE
- *
- * Update d1 = d1 - T12*y2
- *
- CALL SGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
- $ Y( M+P-N+1 ), 1, ONE, D, 1 )
- *
- * Solve triangular system: R11*x = d1
- *
- IF( M.GT.0 ) THEN
- CALL STRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
- $ D, M, INFO )
- *
- IF( INFO.GT.0 ) THEN
- INFO = 2
- RETURN
- END IF
- *
- * Copy D to X
- *
- CALL SCOPY( M, D, 1, X, 1 )
- END IF
- *
- * Backward transformation y = Z**T *y
- *
- CALL SORMRQ( 'Left', 'Transpose', P, 1, NP,
- $ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
- $ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
- WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
- *
- RETURN
- *
- * End of SGGGLM
- *
- END
|