|
- *> \brief \b SBBCSD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SBBCSD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbbcsd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbbcsd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbbcsd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
- * THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
- * V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
- * B22D, B22E, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
- * INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- * REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
- * $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
- * $ PHI( * ), THETA( * ), WORK( * )
- * REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- * $ V2T( LDV2T, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SBBCSD computes the CS decomposition of an orthogonal matrix in
- *> bidiagonal-block form,
- *>
- *>
- *> [ B11 | B12 0 0 ]
- *> [ 0 | 0 -I 0 ]
- *> X = [----------------]
- *> [ B21 | B22 0 0 ]
- *> [ 0 | 0 0 I ]
- *>
- *> [ C | -S 0 0 ]
- *> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T
- *> = [---------] [---------------] [---------] .
- *> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
- *> [ 0 | 0 0 I ]
- *>
- *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
- *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
- *> transposed and/or permuted. This can be done in constant time using
- *> the TRANS and SIGNS options. See SORCSD for details.)
- *>
- *> The bidiagonal matrices B11, B12, B21, and B22 are represented
- *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
- *>
- *> The orthogonal matrices U1, U2, V1T, and V2T are input/output.
- *> The input matrices are pre- or post-multiplied by the appropriate
- *> singular vector matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU1
- *> \verbatim
- *> JOBU1 is CHARACTER
- *> = 'Y': U1 is updated;
- *> otherwise: U1 is not updated.
- *> \endverbatim
- *>
- *> \param[in] JOBU2
- *> \verbatim
- *> JOBU2 is CHARACTER
- *> = 'Y': U2 is updated;
- *> otherwise: U2 is not updated.
- *> \endverbatim
- *>
- *> \param[in] JOBV1T
- *> \verbatim
- *> JOBV1T is CHARACTER
- *> = 'Y': V1T is updated;
- *> otherwise: V1T is not updated.
- *> \endverbatim
- *>
- *> \param[in] JOBV2T
- *> \verbatim
- *> JOBV2T is CHARACTER
- *> = 'Y': V2T is updated;
- *> otherwise: V2T is not updated.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER
- *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
- *> order;
- *> otherwise: X, U1, U2, V1T, and V2T are stored in column-
- *> major order.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows and columns in X, the orthogonal matrix in
- *> bidiagonal-block form.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows in the top-left block of X. 0 <= P <= M.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is INTEGER
- *> The number of columns in the top-left block of X.
- *> 0 <= Q <= MIN(P,M-P,M-Q).
- *> \endverbatim
- *>
- *> \param[in,out] THETA
- *> \verbatim
- *> THETA is REAL array, dimension (Q)
- *> On entry, the angles THETA(1),...,THETA(Q) that, along with
- *> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
- *> form. On exit, the angles whose cosines and sines define the
- *> diagonal blocks in the CS decomposition.
- *> \endverbatim
- *>
- *> \param[in,out] PHI
- *> \verbatim
- *> PHI is REAL array, dimension (Q-1)
- *> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
- *> THETA(Q), define the matrix in bidiagonal-block form.
- *> \endverbatim
- *>
- *> \param[in,out] U1
- *> \verbatim
- *> U1 is REAL array, dimension (LDU1,P)
- *> On entry, a P-by-P matrix. On exit, U1 is postmultiplied
- *> by the left singular vector matrix common to [ B11 ; 0 ] and
- *> [ B12 0 0 ; 0 -I 0 0 ].
- *> \endverbatim
- *>
- *> \param[in] LDU1
- *> \verbatim
- *> LDU1 is INTEGER
- *> The leading dimension of the array U1, LDU1 >= MAX(1,P).
- *> \endverbatim
- *>
- *> \param[in,out] U2
- *> \verbatim
- *> U2 is REAL array, dimension (LDU2,M-P)
- *> On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
- *> postmultiplied by the left singular vector matrix common to
- *> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
- *> \endverbatim
- *>
- *> \param[in] LDU2
- *> \verbatim
- *> LDU2 is INTEGER
- *> The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
- *> \endverbatim
- *>
- *> \param[in,out] V1T
- *> \verbatim
- *> V1T is REAL array, dimension (LDV1T,Q)
- *> On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
- *> by the transpose of the right singular vector
- *> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
- *> \endverbatim
- *>
- *> \param[in] LDV1T
- *> \verbatim
- *> LDV1T is INTEGER
- *> The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
- *> \endverbatim
- *>
- *> \param[in,out] V2T
- *> \verbatim
- *> V2T is REAL array, dimension (LDV2T,M-Q)
- *> On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
- *> premultiplied by the transpose of the right
- *> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
- *> [ B22 0 0 ; 0 0 I ].
- *> \endverbatim
- *>
- *> \param[in] LDV2T
- *> \verbatim
- *> LDV2T is INTEGER
- *> The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
- *> \endverbatim
- *>
- *> \param[out] B11D
- *> \verbatim
- *> B11D is REAL array, dimension (Q)
- *> When SBBCSD converges, B11D contains the cosines of THETA(1),
- *> ..., THETA(Q). If SBBCSD fails to converge, then B11D
- *> contains the diagonal of the partially reduced top-left
- *> block.
- *> \endverbatim
- *>
- *> \param[out] B11E
- *> \verbatim
- *> B11E is REAL array, dimension (Q-1)
- *> When SBBCSD converges, B11E contains zeros. If SBBCSD fails
- *> to converge, then B11E contains the superdiagonal of the
- *> partially reduced top-left block.
- *> \endverbatim
- *>
- *> \param[out] B12D
- *> \verbatim
- *> B12D is REAL array, dimension (Q)
- *> When SBBCSD converges, B12D contains the negative sines of
- *> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
- *> B12D contains the diagonal of the partially reduced top-right
- *> block.
- *> \endverbatim
- *>
- *> \param[out] B12E
- *> \verbatim
- *> B12E is REAL array, dimension (Q-1)
- *> When SBBCSD converges, B12E contains zeros. If SBBCSD fails
- *> to converge, then B12E contains the subdiagonal of the
- *> partially reduced top-right block.
- *> \endverbatim
- *>
- *> \param[out] B21D
- *> \verbatim
- *> B21D is REAL array, dimension (Q)
- *> When SBBCSD converges, B21D contains the negative sines of
- *> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
- *> B21D contains the diagonal of the partially reduced bottom-left
- *> block.
- *> \endverbatim
- *>
- *> \param[out] B21E
- *> \verbatim
- *> B21E is REAL array, dimension (Q-1)
- *> When SBBCSD converges, B21E contains zeros. If SBBCSD fails
- *> to converge, then B21E contains the subdiagonal of the
- *> partially reduced bottom-left block.
- *> \endverbatim
- *>
- *> \param[out] B22D
- *> \verbatim
- *> B22D is REAL array, dimension (Q)
- *> When SBBCSD converges, B22D contains the negative sines of
- *> THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then
- *> B22D contains the diagonal of the partially reduced bottom-right
- *> block.
- *> \endverbatim
- *>
- *> \param[out] B22E
- *> \verbatim
- *> B22E is REAL array, dimension (Q-1)
- *> When SBBCSD converges, B22E contains zeros. If SBBCSD fails
- *> to converge, then B22E contains the subdiagonal of the
- *> partially reduced bottom-right block.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= MAX(1,8*Q).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal size of the WORK array,
- *> returns this value as the first entry of the work array, and
- *> no error message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if SBBCSD did not converge, INFO specifies the number
- *> of nonzero entries in PHI, and B11D, B11E, etc.,
- *> contain the partially reduced matrix.
- *> \endverbatim
- *
- *> \par Internal Parameters:
- * =========================
- *>
- *> \verbatim
- *> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
- *> TOLMUL controls the convergence criterion of the QR loop.
- *> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
- *> are within TOLMUL*EPS of either bound.
- *> \endverbatim
- *
- *> \par References:
- * ================
- *>
- *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
- *> Algorithms, 50(1):33-65, 2009.
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
- $ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
- $ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
- $ B22D, B22E, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
- INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q
- * ..
- * .. Array Arguments ..
- REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
- $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
- $ PHI( * ), THETA( * ), WORK( * )
- REAL U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
- $ V2T( LDV2T, * )
- * ..
- *
- * ===================================================================
- *
- * .. Parameters ..
- INTEGER MAXITR
- PARAMETER ( MAXITR = 6 )
- REAL HUNDRED, MEIGHTH, ONE, TEN, ZERO
- PARAMETER ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0,
- $ ONE = 1.0E0, TEN = 10.0E0, ZERO = 0.0E0 )
- REAL NEGONE
- PARAMETER ( NEGONE = -1.0E0 )
- REAL PIOVER2
- PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210E0 )
- * ..
- * .. Local Scalars ..
- LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
- $ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
- $ WANTV2T
- INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
- $ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
- $ LWORKMIN, LWORKOPT, MAXIT, MINI
- REAL B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
- $ EPS, MU, NU, R, SIGMA11, SIGMA21,
- $ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
- $ UNFL, X1, X2, Y1, Y2
- *
- * .. External Subroutines ..
- EXTERNAL SLASR, SSCAL, SSWAP, SLARTGP, SLARTGS, SLAS2,
- $ XERBLA
- * ..
- * .. External Functions ..
- REAL SLAMCH
- LOGICAL LSAME
- EXTERNAL LSAME, SLAMCH
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test input arguments
- *
- INFO = 0
- LQUERY = LWORK .EQ. -1
- WANTU1 = LSAME( JOBU1, 'Y' )
- WANTU2 = LSAME( JOBU2, 'Y' )
- WANTV1T = LSAME( JOBV1T, 'Y' )
- WANTV2T = LSAME( JOBV2T, 'Y' )
- COLMAJOR = .NOT. LSAME( TRANS, 'T' )
- *
- IF( M .LT. 0 ) THEN
- INFO = -6
- ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
- INFO = -7
- ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
- INFO = -8
- ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
- INFO = -8
- ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
- INFO = -12
- ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
- INFO = -14
- ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
- INFO = -16
- ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
- INFO = -18
- END IF
- *
- * Quick return if Q = 0
- *
- IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
- LWORKMIN = 1
- WORK(1) = LWORKMIN
- RETURN
- END IF
- *
- * Compute workspace
- *
- IF( INFO .EQ. 0 ) THEN
- IU1CS = 1
- IU1SN = IU1CS + Q
- IU2CS = IU1SN + Q
- IU2SN = IU2CS + Q
- IV1TCS = IU2SN + Q
- IV1TSN = IV1TCS + Q
- IV2TCS = IV1TSN + Q
- IV2TSN = IV2TCS + Q
- LWORKOPT = IV2TSN + Q - 1
- LWORKMIN = LWORKOPT
- WORK(1) = LWORKOPT
- IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN
- INFO = -28
- END IF
- END IF
- *
- IF( INFO .NE. 0 ) THEN
- CALL XERBLA( 'SBBCSD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Get machine constants
- *
- EPS = SLAMCH( 'Epsilon' )
- UNFL = SLAMCH( 'Safe minimum' )
- TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
- TOL = TOLMUL*EPS
- THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
- *
- * Test for negligible sines or cosines
- *
- DO I = 1, Q
- IF( THETA(I) .LT. THRESH ) THEN
- THETA(I) = ZERO
- ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
- THETA(I) = PIOVER2
- END IF
- END DO
- DO I = 1, Q-1
- IF( PHI(I) .LT. THRESH ) THEN
- PHI(I) = ZERO
- ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
- PHI(I) = PIOVER2
- END IF
- END DO
- *
- * Initial deflation
- *
- IMAX = Q
- DO WHILE( IMAX .GT. 1 )
- IF( PHI(IMAX-1) .NE. ZERO ) THEN
- EXIT
- END IF
- IMAX = IMAX - 1
- END DO
- IMIN = IMAX - 1
- IF ( IMIN .GT. 1 ) THEN
- DO WHILE( PHI(IMIN-1) .NE. ZERO )
- IMIN = IMIN - 1
- IF ( IMIN .LE. 1 ) EXIT
- END DO
- END IF
- *
- * Initialize iteration counter
- *
- MAXIT = MAXITR*Q*Q
- ITER = 0
- *
- * Begin main iteration loop
- *
- DO WHILE( IMAX .GT. 1 )
- *
- * Compute the matrix entries
- *
- B11D(IMIN) = COS( THETA(IMIN) )
- B21D(IMIN) = -SIN( THETA(IMIN) )
- DO I = IMIN, IMAX - 1
- B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
- B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
- B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
- B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
- B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
- B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
- B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
- B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
- END DO
- B12D(IMAX) = SIN( THETA(IMAX) )
- B22D(IMAX) = COS( THETA(IMAX) )
- *
- * Abort if not converging; otherwise, increment ITER
- *
- IF( ITER .GT. MAXIT ) THEN
- INFO = 0
- DO I = 1, Q
- IF( PHI(I) .NE. ZERO )
- $ INFO = INFO + 1
- END DO
- RETURN
- END IF
- *
- ITER = ITER + IMAX - IMIN
- *
- * Compute shifts
- *
- THETAMAX = THETA(IMIN)
- THETAMIN = THETA(IMIN)
- DO I = IMIN+1, IMAX
- IF( THETA(I) > THETAMAX )
- $ THETAMAX = THETA(I)
- IF( THETA(I) < THETAMIN )
- $ THETAMIN = THETA(I)
- END DO
- *
- IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
- *
- * Zero on diagonals of B11 and B22; induce deflation with a
- * zero shift
- *
- MU = ZERO
- NU = ONE
- *
- ELSE IF( THETAMIN .LT. THRESH ) THEN
- *
- * Zero on diagonals of B12 and B22; induce deflation with a
- * zero shift
- *
- MU = ONE
- NU = ZERO
- *
- ELSE
- *
- * Compute shifts for B11 and B21 and use the lesser
- *
- CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
- $ DUMMY )
- CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
- $ DUMMY )
- *
- IF( SIGMA11 .LE. SIGMA21 ) THEN
- MU = SIGMA11
- NU = SQRT( ONE - MU**2 )
- IF( MU .LT. THRESH ) THEN
- MU = ZERO
- NU = ONE
- END IF
- ELSE
- NU = SIGMA21
- MU = SQRT( 1.0 - NU**2 )
- IF( NU .LT. THRESH ) THEN
- MU = ONE
- NU = ZERO
- END IF
- END IF
- END IF
- *
- * Rotate to produce bulges in B11 and B21
- *
- IF( MU .LE. NU ) THEN
- CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU,
- $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
- ELSE
- CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU,
- $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1) )
- END IF
- *
- TEMP = WORK(IV1TCS+IMIN-1)*B11D(IMIN) +
- $ WORK(IV1TSN+IMIN-1)*B11E(IMIN)
- B11E(IMIN) = WORK(IV1TCS+IMIN-1)*B11E(IMIN) -
- $ WORK(IV1TSN+IMIN-1)*B11D(IMIN)
- B11D(IMIN) = TEMP
- B11BULGE = WORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
- B11D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
- TEMP = WORK(IV1TCS+IMIN-1)*B21D(IMIN) +
- $ WORK(IV1TSN+IMIN-1)*B21E(IMIN)
- B21E(IMIN) = WORK(IV1TCS+IMIN-1)*B21E(IMIN) -
- $ WORK(IV1TSN+IMIN-1)*B21D(IMIN)
- B21D(IMIN) = TEMP
- B21BULGE = WORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
- B21D(IMIN+1) = WORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
- *
- * Compute THETA(IMIN)
- *
- THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
- $ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
- *
- * Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
- *
- IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
- CALL SLARTGP( B11BULGE, B11D(IMIN), WORK(IU1SN+IMIN-1),
- $ WORK(IU1CS+IMIN-1), R )
- ELSE IF( MU .LE. NU ) THEN
- CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
- $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
- ELSE
- CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
- $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1) )
- END IF
- IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
- CALL SLARTGP( B21BULGE, B21D(IMIN), WORK(IU2SN+IMIN-1),
- $ WORK(IU2CS+IMIN-1), R )
- ELSE IF( NU .LT. MU ) THEN
- CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
- $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
- ELSE
- CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU,
- $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1) )
- END IF
- WORK(IU2CS+IMIN-1) = -WORK(IU2CS+IMIN-1)
- WORK(IU2SN+IMIN-1) = -WORK(IU2SN+IMIN-1)
- *
- TEMP = WORK(IU1CS+IMIN-1)*B11E(IMIN) +
- $ WORK(IU1SN+IMIN-1)*B11D(IMIN+1)
- B11D(IMIN+1) = WORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
- $ WORK(IU1SN+IMIN-1)*B11E(IMIN)
- B11E(IMIN) = TEMP
- IF( IMAX .GT. IMIN+1 ) THEN
- B11BULGE = WORK(IU1SN+IMIN-1)*B11E(IMIN+1)
- B11E(IMIN+1) = WORK(IU1CS+IMIN-1)*B11E(IMIN+1)
- END IF
- TEMP = WORK(IU1CS+IMIN-1)*B12D(IMIN) +
- $ WORK(IU1SN+IMIN-1)*B12E(IMIN)
- B12E(IMIN) = WORK(IU1CS+IMIN-1)*B12E(IMIN) -
- $ WORK(IU1SN+IMIN-1)*B12D(IMIN)
- B12D(IMIN) = TEMP
- B12BULGE = WORK(IU1SN+IMIN-1)*B12D(IMIN+1)
- B12D(IMIN+1) = WORK(IU1CS+IMIN-1)*B12D(IMIN+1)
- TEMP = WORK(IU2CS+IMIN-1)*B21E(IMIN) +
- $ WORK(IU2SN+IMIN-1)*B21D(IMIN+1)
- B21D(IMIN+1) = WORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
- $ WORK(IU2SN+IMIN-1)*B21E(IMIN)
- B21E(IMIN) = TEMP
- IF( IMAX .GT. IMIN+1 ) THEN
- B21BULGE = WORK(IU2SN+IMIN-1)*B21E(IMIN+1)
- B21E(IMIN+1) = WORK(IU2CS+IMIN-1)*B21E(IMIN+1)
- END IF
- TEMP = WORK(IU2CS+IMIN-1)*B22D(IMIN) +
- $ WORK(IU2SN+IMIN-1)*B22E(IMIN)
- B22E(IMIN) = WORK(IU2CS+IMIN-1)*B22E(IMIN) -
- $ WORK(IU2SN+IMIN-1)*B22D(IMIN)
- B22D(IMIN) = TEMP
- B22BULGE = WORK(IU2SN+IMIN-1)*B22D(IMIN+1)
- B22D(IMIN+1) = WORK(IU2CS+IMIN-1)*B22D(IMIN+1)
- *
- * Inner loop: chase bulges from B11(IMIN,IMIN+2),
- * B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
- * bottom-right
- *
- DO I = IMIN+1, IMAX-1
- *
- * Compute PHI(I-1)
- *
- X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
- X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
- Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
- Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
- *
- PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
- *
- * Determine if there are bulges to chase or if a new direct
- * summand has been reached
- *
- RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
- RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
- RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
- RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
- *
- * If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
- * B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
- * chasing by applying the original shift again.
- *
- IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
- CALL SLARTGP( X2, X1, WORK(IV1TSN+I-1), WORK(IV1TCS+I-1),
- $ R )
- ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
- CALL SLARTGP( B11BULGE, B11E(I-1), WORK(IV1TSN+I-1),
- $ WORK(IV1TCS+I-1), R )
- ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
- CALL SLARTGP( B21BULGE, B21E(I-1), WORK(IV1TSN+I-1),
- $ WORK(IV1TCS+I-1), R )
- ELSE IF( MU .LE. NU ) THEN
- CALL SLARTGS( B11D(I), B11E(I), MU, WORK(IV1TCS+I-1),
- $ WORK(IV1TSN+I-1) )
- ELSE
- CALL SLARTGS( B21D(I), B21E(I), NU, WORK(IV1TCS+I-1),
- $ WORK(IV1TSN+I-1) )
- END IF
- WORK(IV1TCS+I-1) = -WORK(IV1TCS+I-1)
- WORK(IV1TSN+I-1) = -WORK(IV1TSN+I-1)
- IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( Y2, Y1, WORK(IV2TSN+I-1-1),
- $ WORK(IV2TCS+I-1-1), R )
- ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
- CALL SLARTGP( B12BULGE, B12D(I-1), WORK(IV2TSN+I-1-1),
- $ WORK(IV2TCS+I-1-1), R )
- ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( B22BULGE, B22D(I-1), WORK(IV2TSN+I-1-1),
- $ WORK(IV2TCS+I-1-1), R )
- ELSE IF( NU .LT. MU ) THEN
- CALL SLARTGS( B12E(I-1), B12D(I), NU, WORK(IV2TCS+I-1-1),
- $ WORK(IV2TSN+I-1-1) )
- ELSE
- CALL SLARTGS( B22E(I-1), B22D(I), MU, WORK(IV2TCS+I-1-1),
- $ WORK(IV2TSN+I-1-1) )
- END IF
- *
- TEMP = WORK(IV1TCS+I-1)*B11D(I) + WORK(IV1TSN+I-1)*B11E(I)
- B11E(I) = WORK(IV1TCS+I-1)*B11E(I) -
- $ WORK(IV1TSN+I-1)*B11D(I)
- B11D(I) = TEMP
- B11BULGE = WORK(IV1TSN+I-1)*B11D(I+1)
- B11D(I+1) = WORK(IV1TCS+I-1)*B11D(I+1)
- TEMP = WORK(IV1TCS+I-1)*B21D(I) + WORK(IV1TSN+I-1)*B21E(I)
- B21E(I) = WORK(IV1TCS+I-1)*B21E(I) -
- $ WORK(IV1TSN+I-1)*B21D(I)
- B21D(I) = TEMP
- B21BULGE = WORK(IV1TSN+I-1)*B21D(I+1)
- B21D(I+1) = WORK(IV1TCS+I-1)*B21D(I+1)
- TEMP = WORK(IV2TCS+I-1-1)*B12E(I-1) +
- $ WORK(IV2TSN+I-1-1)*B12D(I)
- B12D(I) = WORK(IV2TCS+I-1-1)*B12D(I) -
- $ WORK(IV2TSN+I-1-1)*B12E(I-1)
- B12E(I-1) = TEMP
- B12BULGE = WORK(IV2TSN+I-1-1)*B12E(I)
- B12E(I) = WORK(IV2TCS+I-1-1)*B12E(I)
- TEMP = WORK(IV2TCS+I-1-1)*B22E(I-1) +
- $ WORK(IV2TSN+I-1-1)*B22D(I)
- B22D(I) = WORK(IV2TCS+I-1-1)*B22D(I) -
- $ WORK(IV2TSN+I-1-1)*B22E(I-1)
- B22E(I-1) = TEMP
- B22BULGE = WORK(IV2TSN+I-1-1)*B22E(I)
- B22E(I) = WORK(IV2TCS+I-1-1)*B22E(I)
- *
- * Compute THETA(I)
- *
- X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
- X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
- Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
- Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
- *
- THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
- *
- * Determine if there are bulges to chase or if a new direct
- * summand has been reached
- *
- RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
- RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
- RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
- RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
- *
- * If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
- * B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
- * chasing by applying the original shift again.
- *
- IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
- CALL SLARTGP( X2, X1, WORK(IU1SN+I-1), WORK(IU1CS+I-1),
- $ R )
- ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
- CALL SLARTGP( B11BULGE, B11D(I), WORK(IU1SN+I-1),
- $ WORK(IU1CS+I-1), R )
- ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
- CALL SLARTGP( B12BULGE, B12E(I-1), WORK(IU1SN+I-1),
- $ WORK(IU1CS+I-1), R )
- ELSE IF( MU .LE. NU ) THEN
- CALL SLARTGS( B11E(I), B11D(I+1), MU, WORK(IU1CS+I-1),
- $ WORK(IU1SN+I-1) )
- ELSE
- CALL SLARTGS( B12D(I), B12E(I), NU, WORK(IU1CS+I-1),
- $ WORK(IU1SN+I-1) )
- END IF
- IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( Y2, Y1, WORK(IU2SN+I-1), WORK(IU2CS+I-1),
- $ R )
- ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
- CALL SLARTGP( B21BULGE, B21D(I), WORK(IU2SN+I-1),
- $ WORK(IU2CS+I-1), R )
- ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( B22BULGE, B22E(I-1), WORK(IU2SN+I-1),
- $ WORK(IU2CS+I-1), R )
- ELSE IF( NU .LT. MU ) THEN
- CALL SLARTGS( B21E(I), B21E(I+1), NU, WORK(IU2CS+I-1),
- $ WORK(IU2SN+I-1) )
- ELSE
- CALL SLARTGS( B22D(I), B22E(I), MU, WORK(IU2CS+I-1),
- $ WORK(IU2SN+I-1) )
- END IF
- WORK(IU2CS+I-1) = -WORK(IU2CS+I-1)
- WORK(IU2SN+I-1) = -WORK(IU2SN+I-1)
- *
- TEMP = WORK(IU1CS+I-1)*B11E(I) + WORK(IU1SN+I-1)*B11D(I+1)
- B11D(I+1) = WORK(IU1CS+I-1)*B11D(I+1) -
- $ WORK(IU1SN+I-1)*B11E(I)
- B11E(I) = TEMP
- IF( I .LT. IMAX - 1 ) THEN
- B11BULGE = WORK(IU1SN+I-1)*B11E(I+1)
- B11E(I+1) = WORK(IU1CS+I-1)*B11E(I+1)
- END IF
- TEMP = WORK(IU2CS+I-1)*B21E(I) + WORK(IU2SN+I-1)*B21D(I+1)
- B21D(I+1) = WORK(IU2CS+I-1)*B21D(I+1) -
- $ WORK(IU2SN+I-1)*B21E(I)
- B21E(I) = TEMP
- IF( I .LT. IMAX - 1 ) THEN
- B21BULGE = WORK(IU2SN+I-1)*B21E(I+1)
- B21E(I+1) = WORK(IU2CS+I-1)*B21E(I+1)
- END IF
- TEMP = WORK(IU1CS+I-1)*B12D(I) + WORK(IU1SN+I-1)*B12E(I)
- B12E(I) = WORK(IU1CS+I-1)*B12E(I) - WORK(IU1SN+I-1)*B12D(I)
- B12D(I) = TEMP
- B12BULGE = WORK(IU1SN+I-1)*B12D(I+1)
- B12D(I+1) = WORK(IU1CS+I-1)*B12D(I+1)
- TEMP = WORK(IU2CS+I-1)*B22D(I) + WORK(IU2SN+I-1)*B22E(I)
- B22E(I) = WORK(IU2CS+I-1)*B22E(I) - WORK(IU2SN+I-1)*B22D(I)
- B22D(I) = TEMP
- B22BULGE = WORK(IU2SN+I-1)*B22D(I+1)
- B22D(I+1) = WORK(IU2CS+I-1)*B22D(I+1)
- *
- END DO
- *
- * Compute PHI(IMAX-1)
- *
- X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
- $ COS(THETA(IMAX-1))*B21E(IMAX-1)
- Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
- $ COS(THETA(IMAX-1))*B22D(IMAX-1)
- Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
- *
- PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
- *
- * Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
- *
- RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
- RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
- *
- IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( Y2, Y1, WORK(IV2TSN+IMAX-1-1),
- $ WORK(IV2TCS+IMAX-1-1), R )
- ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
- CALL SLARTGP( B12BULGE, B12D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
- $ WORK(IV2TCS+IMAX-1-1), R )
- ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
- CALL SLARTGP( B22BULGE, B22D(IMAX-1), WORK(IV2TSN+IMAX-1-1),
- $ WORK(IV2TCS+IMAX-1-1), R )
- ELSE IF( NU .LT. MU ) THEN
- CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
- $ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
- ELSE
- CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
- $ WORK(IV2TCS+IMAX-1-1), WORK(IV2TSN+IMAX-1-1) )
- END IF
- *
- TEMP = WORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
- $ WORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
- B12D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
- $ WORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
- B12E(IMAX-1) = TEMP
- TEMP = WORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
- $ WORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
- B22D(IMAX) = WORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
- $ WORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
- B22E(IMAX-1) = TEMP
- *
- * Update singular vectors
- *
- IF( WANTU1 ) THEN
- IF( COLMAJOR ) THEN
- CALL SLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
- $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
- $ U1(1,IMIN), LDU1 )
- ELSE
- CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
- $ WORK(IU1CS+IMIN-1), WORK(IU1SN+IMIN-1),
- $ U1(IMIN,1), LDU1 )
- END IF
- END IF
- IF( WANTU2 ) THEN
- IF( COLMAJOR ) THEN
- CALL SLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
- $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
- $ U2(1,IMIN), LDU2 )
- ELSE
- CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
- $ WORK(IU2CS+IMIN-1), WORK(IU2SN+IMIN-1),
- $ U2(IMIN,1), LDU2 )
- END IF
- END IF
- IF( WANTV1T ) THEN
- IF( COLMAJOR ) THEN
- CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
- $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
- $ V1T(IMIN,1), LDV1T )
- ELSE
- CALL SLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
- $ WORK(IV1TCS+IMIN-1), WORK(IV1TSN+IMIN-1),
- $ V1T(1,IMIN), LDV1T )
- END IF
- END IF
- IF( WANTV2T ) THEN
- IF( COLMAJOR ) THEN
- CALL SLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
- $ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
- $ V2T(IMIN,1), LDV2T )
- ELSE
- CALL SLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
- $ WORK(IV2TCS+IMIN-1), WORK(IV2TSN+IMIN-1),
- $ V2T(1,IMIN), LDV2T )
- END IF
- END IF
- *
- * Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
- *
- IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
- B11D(IMAX) = -B11D(IMAX)
- B21D(IMAX) = -B21D(IMAX)
- IF( WANTV1T ) THEN
- IF( COLMAJOR ) THEN
- CALL SSCAL( Q, NEGONE, V1T(IMAX,1), LDV1T )
- ELSE
- CALL SSCAL( Q, NEGONE, V1T(1,IMAX), 1 )
- END IF
- END IF
- END IF
- *
- * Compute THETA(IMAX)
- *
- X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
- $ SIN(PHI(IMAX-1))*B12E(IMAX-1)
- Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
- $ SIN(PHI(IMAX-1))*B22E(IMAX-1)
- *
- THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
- *
- * Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
- * and B22(IMAX,IMAX-1)
- *
- IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
- B12D(IMAX) = -B12D(IMAX)
- IF( WANTU1 ) THEN
- IF( COLMAJOR ) THEN
- CALL SSCAL( P, NEGONE, U1(1,IMAX), 1 )
- ELSE
- CALL SSCAL( P, NEGONE, U1(IMAX,1), LDU1 )
- END IF
- END IF
- END IF
- IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
- B22D(IMAX) = -B22D(IMAX)
- IF( WANTU2 ) THEN
- IF( COLMAJOR ) THEN
- CALL SSCAL( M-P, NEGONE, U2(1,IMAX), 1 )
- ELSE
- CALL SSCAL( M-P, NEGONE, U2(IMAX,1), LDU2 )
- END IF
- END IF
- END IF
- *
- * Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
- *
- IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
- IF( WANTV2T ) THEN
- IF( COLMAJOR ) THEN
- CALL SSCAL( M-Q, NEGONE, V2T(IMAX,1), LDV2T )
- ELSE
- CALL SSCAL( M-Q, NEGONE, V2T(1,IMAX), 1 )
- END IF
- END IF
- END IF
- *
- * Test for negligible sines or cosines
- *
- DO I = IMIN, IMAX
- IF( THETA(I) .LT. THRESH ) THEN
- THETA(I) = ZERO
- ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
- THETA(I) = PIOVER2
- END IF
- END DO
- DO I = IMIN, IMAX-1
- IF( PHI(I) .LT. THRESH ) THEN
- PHI(I) = ZERO
- ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
- PHI(I) = PIOVER2
- END IF
- END DO
- *
- * Deflate
- *
- IF (IMAX .GT. 1) THEN
- DO WHILE( PHI(IMAX-1) .EQ. ZERO )
- IMAX = IMAX - 1
- IF (IMAX .LE. 1) EXIT
- END DO
- END IF
- IF( IMIN .GT. IMAX - 1 )
- $ IMIN = IMAX - 1
- IF (IMIN .GT. 1) THEN
- DO WHILE (PHI(IMIN-1) .NE. ZERO)
- IMIN = IMIN - 1
- IF (IMIN .LE. 1) EXIT
- END DO
- END IF
- *
- * Repeat main iteration loop
- *
- END DO
- *
- * Postprocessing: order THETA from least to greatest
- *
- DO I = 1, Q
- *
- MINI = I
- THETAMIN = THETA(I)
- DO J = I+1, Q
- IF( THETA(J) .LT. THETAMIN ) THEN
- MINI = J
- THETAMIN = THETA(J)
- END IF
- END DO
- *
- IF( MINI .NE. I ) THEN
- THETA(MINI) = THETA(I)
- THETA(I) = THETAMIN
- IF( COLMAJOR ) THEN
- IF( WANTU1 )
- $ CALL SSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
- IF( WANTU2 )
- $ CALL SSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
- IF( WANTV1T )
- $ CALL SSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
- IF( WANTV2T )
- $ CALL SSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
- $ LDV2T )
- ELSE
- IF( WANTU1 )
- $ CALL SSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
- IF( WANTU2 )
- $ CALL SSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
- IF( WANTV1T )
- $ CALL SSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
- IF( WANTV2T )
- $ CALL SSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
- END IF
- END IF
- *
- END DO
- *
- RETURN
- *
- * End of SBBCSD
- *
- END
|