|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__2 = 2;
-
- /* > \brief \b DTGEXC */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTGEXC + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgexc.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgexc.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgexc.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
- /* LDZ, IFST, ILST, WORK, LWORK, INFO ) */
-
- /* LOGICAL WANTQ, WANTZ */
- /* INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
- /* $ WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTGEXC reorders the generalized real Schur decomposition of a real */
- /* > matrix pair (A,B) using an orthogonal equivalence transformation */
- /* > */
- /* > (A, B) = Q * (A, B) * Z**T, */
- /* > */
- /* > so that the diagonal block of (A, B) with row index IFST is moved */
- /* > to row ILST. */
- /* > */
- /* > (A, B) must be in generalized real Schur canonical form (as returned */
- /* > by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
- /* > diagonal blocks. B is upper triangular. */
- /* > */
- /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
- /* > updated. */
- /* > */
- /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
- /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTQ */
- /* > \verbatim */
- /* > WANTQ is LOGICAL */
- /* > .TRUE. : update the left transformation matrix Q; */
- /* > .FALSE.: do not update Q. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > .TRUE. : update the right transformation matrix Z; */
- /* > .FALSE.: do not update Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the matrix A in generalized real Schur canonical */
- /* > form. */
- /* > On exit, the updated matrix A, again in generalized */
- /* > real Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
- /* > On entry, the matrix B in generalized real Schur canonical */
- /* > form (A,B). */
- /* > On exit, the updated matrix B, again in generalized */
- /* > real Schur canonical form (A,B). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
- /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
- /* > On exit, the updated matrix Q. */
- /* > If WANTQ = .FALSE., Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= 1. */
- /* > If WANTQ = .TRUE., LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
- /* > On entry, if WANTZ = .TRUE., the orthogonal matrix Z. */
- /* > On exit, the updated matrix Z. */
- /* > If WANTZ = .FALSE., Z is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1. */
- /* > If WANTZ = .TRUE., LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] IFST */
- /* > \verbatim */
- /* > IFST is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ILST */
- /* > \verbatim */
- /* > ILST is INTEGER */
- /* > Specify the reordering of the diagonal blocks of (A, B). */
- /* > The block with row index IFST is moved to row ILST, by a */
- /* > sequence of swapping between adjacent blocks. */
- /* > On exit, if IFST pointed on entry to the second row of */
- /* > a 2-by-2 block, it is changed to point to the first row; */
- /* > ILST always points to the first row of the block in its */
- /* > final position (which may differ from its input value by */
- /* > +1 or -1). 1 <= IFST, ILST <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > =0: successful exit. */
- /* > <0: if INFO = -i, the i-th argument had an illegal value. */
- /* > =1: The transformed matrix pair (A, B) would be too far */
- /* > from generalized Schur form; the problem is ill- */
- /* > conditioned. (A, B) may have been partially reordered, */
- /* > and ILST points to the first row of the current */
- /* > position of the block being moved. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleGEcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtgexc_(logical *wantq, logical *wantz, integer *n,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
- q, integer *ldq, doublereal *z__, integer *ldz, integer *ifst,
- integer *ilst, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
- z_offset, i__1;
-
- /* Local variables */
- integer here, lwmin;
- extern /* Subroutine */ void dtgex2_(logical *, logical *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *, integer
- *, doublereal *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer nbnext;
- logical lquery;
- integer nbf, nbl;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldq < 1 || *wantq && *ldq < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldz < 1 || *wantz && *ldz < f2cmax(1,*n)) {
- *info = -11;
- } else if (*ifst < 1 || *ifst > *n) {
- *info = -12;
- } else if (*ilst < 1 || *ilst > *n) {
- *info = -13;
- }
-
- if (*info == 0) {
- if (*n <= 1) {
- lwmin = 1;
- } else {
- lwmin = (*n << 2) + 16;
- }
- work[1] = (doublereal) lwmin;
-
- if (*lwork < lwmin && ! lquery) {
- *info = -15;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGEXC", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n <= 1) {
- return;
- }
-
- /* Determine the first row of the specified block and find out */
- /* if it is 1-by-1 or 2-by-2. */
-
- if (*ifst > 1) {
- if (a[*ifst + (*ifst - 1) * a_dim1] != 0.) {
- --(*ifst);
- }
- }
- nbf = 1;
- if (*ifst < *n) {
- if (a[*ifst + 1 + *ifst * a_dim1] != 0.) {
- nbf = 2;
- }
- }
-
- /* Determine the first row of the final block */
- /* and find out if it is 1-by-1 or 2-by-2. */
-
- if (*ilst > 1) {
- if (a[*ilst + (*ilst - 1) * a_dim1] != 0.) {
- --(*ilst);
- }
- }
- nbl = 1;
- if (*ilst < *n) {
- if (a[*ilst + 1 + *ilst * a_dim1] != 0.) {
- nbl = 2;
- }
- }
- if (*ifst == *ilst) {
- return;
- }
-
- if (*ifst < *ilst) {
-
- /* Update ILST. */
-
- if (nbf == 2 && nbl == 1) {
- --(*ilst);
- }
- if (nbf == 1 && nbl == 2) {
- ++(*ilst);
- }
-
- here = *ifst;
-
- L10:
-
- /* Swap with next one below. */
-
- if (nbf == 1 || nbf == 2) {
-
- /* Current block either 1-by-1 or 2-by-2. */
-
- nbnext = 1;
- if (here + nbf + 1 <= *n) {
- if (a[here + nbf + 1 + (here + nbf) * a_dim1] != 0.) {
- nbnext = 2;
- }
- }
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[
- q_offset], ldq, &z__[z_offset], ldz, &here, &nbf, &nbnext,
- &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- here += nbnext;
-
- /* Test if 2-by-2 block breaks into two 1-by-1 blocks. */
-
- if (nbf == 2) {
- if (a[here + 1 + here * a_dim1] == 0.) {
- nbf = 3;
- }
- }
-
- } else {
-
- /* Current block consists of two 1-by-1 blocks, each of which */
- /* must be swapped individually. */
-
- nbnext = 1;
- if (here + 3 <= *n) {
- if (a[here + 3 + (here + 2) * a_dim1] != 0.) {
- nbnext = 2;
- }
- }
- i__1 = here + 1;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[
- q_offset], ldq, &z__[z_offset], ldz, &i__1, &c__1, &
- nbnext, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- if (nbnext == 1) {
-
- /* Swap two 1-by-1 blocks. */
-
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb,
- &q[q_offset], ldq, &z__[z_offset], ldz, &here, &c__1,
- &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- ++here;
-
- } else {
-
- /* Recompute NBNEXT in case of 2-by-2 split. */
-
- if (a[here + 2 + (here + 1) * a_dim1] == 0.) {
- nbnext = 1;
- }
- if (nbnext == 2) {
-
- /* 2-by-2 block did not split. */
-
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- here, &c__1, &nbnext, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- here += 2;
- } else {
-
- /* 2-by-2 block did split. */
-
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- here, &c__1, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- ++here;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- here, &c__1, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- ++here;
- }
-
- }
- }
- if (here < *ilst) {
- goto L10;
- }
- } else {
- here = *ifst;
-
- L20:
-
- /* Swap with next one below. */
-
- if (nbf == 1 || nbf == 2) {
-
- /* Current block either 1-by-1 or 2-by-2. */
-
- nbnext = 1;
- if (here >= 3) {
- if (a[here - 1 + (here - 2) * a_dim1] != 0.) {
- nbnext = 2;
- }
- }
- i__1 = here - nbnext;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[
- q_offset], ldq, &z__[z_offset], ldz, &i__1, &nbnext, &nbf,
- &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- here -= nbnext;
-
- /* Test if 2-by-2 block breaks into two 1-by-1 blocks. */
-
- if (nbf == 2) {
- if (a[here + 1 + here * a_dim1] == 0.) {
- nbf = 3;
- }
- }
-
- } else {
-
- /* Current block consists of two 1-by-1 blocks, each of which */
- /* must be swapped individually. */
-
- nbnext = 1;
- if (here >= 3) {
- if (a[here - 1 + (here - 2) * a_dim1] != 0.) {
- nbnext = 2;
- }
- }
- i__1 = here - nbnext;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb, &q[
- q_offset], ldq, &z__[z_offset], ldz, &i__1, &nbnext, &
- c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- if (nbnext == 1) {
-
- /* Swap two 1-by-1 blocks. */
-
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset], ldb,
- &q[q_offset], ldq, &z__[z_offset], ldz, &here, &
- nbnext, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- --here;
- } else {
-
- /* Recompute NBNEXT in case of 2-by-2 split. */
-
- if (a[here + (here - 1) * a_dim1] == 0.) {
- nbnext = 1;
- }
- if (nbnext == 2) {
-
- /* 2-by-2 block did not split. */
-
- i__1 = here - 1;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- i__1, &c__2, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- here += -2;
- } else {
-
- /* 2-by-2 block did split. */
-
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- here, &c__1, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- --here;
- dtgex2_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
- ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &
- here, &c__1, &c__1, &work[1], lwork, info);
- if (*info != 0) {
- *ilst = here;
- return;
- }
- --here;
- }
- }
- }
- if (here > *ilst) {
- goto L20;
- }
- }
- *ilst = here;
- work[1] = (doublereal) lwmin;
- return;
-
- /* End of DTGEXC */
-
- } /* dtgexc_ */
|