|
- *> \brief \b DTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTFTTR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfttr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfttr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfttr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANSR, UPLO
- * INTEGER INFO, N, LDA
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( 0: LDA-1, 0: * ), ARF( 0: * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTFTTR copies a triangular matrix A from rectangular full packed
- *> format (TF) to standard full format (TR).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> = 'N': ARF is in Normal format;
- *> = 'T': ARF is in Transpose format.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': A is upper triangular;
- *> = 'L': A is lower triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices ARF and A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ARF
- *> \verbatim
- *> ARF is DOUBLE PRECISION array, dimension (N*(N+1)/2).
- *> On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
- *> matrix A in RFP format. See the "Notes" below for more
- *> details.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On exit, the triangular matrix A. If UPLO = 'U', the
- *> leading N-by-N upper triangular part of the array A contains
- *> the upper triangular matrix, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of the array A contains
- *> the lower triangular matrix, and the strictly upper
- *> triangular part of A is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Rectangular Full Packed (RFP) Format when N is
- *> even. We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> the transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> the transpose of the last three columns of AP lower.
- *> This covers the case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 03 04 05 33 43 53
- *> 13 14 15 00 44 54
- *> 23 24 25 10 11 55
- *> 33 34 35 20 21 22
- *> 00 44 45 30 31 32
- *> 01 11 55 40 41 42
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We then consider Rectangular Full Packed (RFP) Format when N is
- *> odd. We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> the transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> the transpose of the last two columns of AP lower.
- *> This covers the case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 02 03 04 00 33 43
- *> 12 13 14 10 11 44
- *> 22 23 24 20 21 22
- *> 00 33 34 30 31 32
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *> RFP A RFP A
- *>
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE DTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANSR, UPLO
- INTEGER INFO, N, LDA
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( 0: LDA-1, 0: * ), ARF( 0: * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, NISODD, NORMALTRANSR
- INTEGER N1, N2, K, NT, NX2, NP1X2
- INTEGER I, J, L, IJ
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MOD
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NORMALTRANSR = LSAME( TRANSR, 'N' )
- LOWER = LSAME( UPLO, 'L' )
- IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTFTTR', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.LE.1 ) THEN
- IF( N.EQ.1 ) THEN
- A( 0, 0 ) = ARF( 0 )
- END IF
- RETURN
- END IF
- *
- * Size of array ARF(0:nt-1)
- *
- NT = N*( N+1 ) / 2
- *
- * set N1 and N2 depending on LOWER: for N even N1=N2=K
- *
- IF( LOWER ) THEN
- N2 = N / 2
- N1 = N - N2
- ELSE
- N1 = N / 2
- N2 = N - N1
- END IF
- *
- * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
- * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
- * N--by--(N+1)/2.
- *
- IF( MOD( N, 2 ).EQ.0 ) THEN
- K = N / 2
- NISODD = .FALSE.
- IF( .NOT.LOWER )
- $ NP1X2 = N + N + 2
- ELSE
- NISODD = .TRUE.
- IF( .NOT.LOWER )
- $ NX2 = N + N
- END IF
- *
- IF( NISODD ) THEN
- *
- * N is odd
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is odd and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * N is odd, TRANSR = 'N', and UPLO = 'L'
- *
- IJ = 0
- DO J = 0, N2
- DO I = N1, N2 + J
- A( N2+J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO I = J, N - 1
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- *
- ELSE
- *
- * N is odd, TRANSR = 'N', and UPLO = 'U'
- *
- IJ = NT - N
- DO J = N - 1, N1, -1
- DO I = 0, J
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO L = J - N1, N1 - 1
- A( J-N1, L ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- IJ = IJ - NX2
- END DO
- *
- END IF
- *
- ELSE
- *
- * N is odd and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * N is odd, TRANSR = 'T', and UPLO = 'L'
- *
- IJ = 0
- DO J = 0, N2 - 1
- DO I = 0, J
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO I = N1 + J, N - 1
- A( I, N1+J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- DO J = N2, N - 1
- DO I = 0, N1 - 1
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- *
- ELSE
- *
- * N is odd, TRANSR = 'T', and UPLO = 'U'
- *
- IJ = 0
- DO J = 0, N1
- DO I = N1, N - 1
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- DO J = 0, N1 - 1
- DO I = 0, J
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO L = N2 + J, N - 1
- A( N2+J, L ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- *
- END IF
- *
- END IF
- *
- ELSE
- *
- * N is even
- *
- IF( NORMALTRANSR ) THEN
- *
- * N is even and TRANSR = 'N'
- *
- IF( LOWER ) THEN
- *
- * N is even, TRANSR = 'N', and UPLO = 'L'
- *
- IJ = 0
- DO J = 0, K - 1
- DO I = K, K + J
- A( K+J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO I = J, N - 1
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- *
- ELSE
- *
- * N is even, TRANSR = 'N', and UPLO = 'U'
- *
- IJ = NT - N - 1
- DO J = N - 1, K, -1
- DO I = 0, J
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO L = J - K, K - 1
- A( J-K, L ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- IJ = IJ - NP1X2
- END DO
- *
- END IF
- *
- ELSE
- *
- * N is even and TRANSR = 'T'
- *
- IF( LOWER ) THEN
- *
- * N is even, TRANSR = 'T', and UPLO = 'L'
- *
- IJ = 0
- J = K
- DO I = K, N - 1
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO J = 0, K - 2
- DO I = 0, J
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO I = K + 1 + J, N - 1
- A( I, K+1+J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- DO J = K - 1, N - 1
- DO I = 0, K - 1
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- *
- ELSE
- *
- * N is even, TRANSR = 'T', and UPLO = 'U'
- *
- IJ = 0
- DO J = 0, K
- DO I = K, N - 1
- A( J, I ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- DO J = 0, K - 2
- DO I = 0, J
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- DO L = K + 1 + J, N - 1
- A( K+1+J, L ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- END DO
- * Note that here, on exit of the loop, J = K-1
- DO I = 0, J
- A( I, J ) = ARF( IJ )
- IJ = IJ + 1
- END DO
- *
- END IF
- *
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of DTFTTR
- *
- END
|