|
- *> \brief \b DSYTRS_AA
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYTRS_AA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs_aa.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs_aa.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs_aa.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
- * WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYTRS_AA solves a system of linear equations A*X = B with a real
- *> symmetric matrix A using the factorization A = U**T*T*U or
- *> A = L*T*L**T computed by DSYTRF_AA.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are stored
- *> as an upper or lower triangular matrix.
- *> = 'U': Upper triangular, form is A = U**T*T*U;
- *> = 'L': Lower triangular, form is A = L*T*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> Details of factors computed by DSYTRF_AA.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges as computed by DSYTRF_AA.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the right hand side matrix B.
- *> On exit, the solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYcomputational
- *
- * =====================================================================
- SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
- $ WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER N, NRHS, LDA, LDB, LWORK, INFO
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, UPPER
- INTEGER K, KP, LWKOPT
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACPY, DGTSV, DSWAP, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYTRS_AA', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- LWKOPT = (3*N-2)
- WORK( 1 ) = LWKOPT
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 .OR. NRHS.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Solve A*X = B, where A = U**T*T*U.
- *
- * 1) Forward substitution with U**T
- *
- IF( N.GT.1 ) THEN
- *
- * Pivot, P**T * B -> B
- *
- DO K = 1, N
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
- *
- * Compute U**T \ B -> B [ (U**T \P**T * B) ]
- *
- CALL DTRSM('L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
- $ LDA, B( 2, 1 ), LDB)
- END IF
- *
- * 2) Solve with triangular matrix T
- *
- * Compute T \ B -> B [ T \ (U**T \P**T * B) ]
- *
- CALL DLACPY( 'F', 1, N, A( 1, 1 ), LDA+1, WORK( N ), 1)
- IF( N.GT.1 ) THEN
- CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
- CALL DLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1 )
- END IF
- CALL DGTSV( N, NRHS, WORK( 1 ), WORK( N ), WORK( 2*N ), B, LDB,
- $ INFO )
- *
- * 3) Backward substitution with U
- *
- IF( N.GT.1 ) THEN
- *
- * Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
- *
- CALL DTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
- $ LDA, B( 2, 1 ), LDB)
- *
- * Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
- *
- DO K = N, 1, -1
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
- END IF
- *
- ELSE
- *
- * Solve A*X = B, where A = L*T*L**T.
- *
- * 1) Forward substitution with L
- *
- IF( N.GT.1 ) THEN
- *
- * Pivot, P**T * B -> B
- *
- DO K = 1, N
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
- *
- * Compute L \ B -> B [ (L \P**T * B) ]
- *
- CALL DTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
- $ LDA, B( 2, 1 ), LDB)
- END IF
- *
- * 2) Solve with triangular matrix T
- *
- * Compute T \ B -> B [ T \ (L \P**T * B) ]
- *
- CALL DLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
- IF( N.GT.1 ) THEN
- CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1 )
- CALL DLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1 )
- END IF
- CALL DGTSV( N, NRHS, WORK( 1 ), WORK(N), WORK( 2*N ), B, LDB,
- $ INFO)
- *
- * 3) Backward substitution with L**T
- *
- IF( N.GT.1 ) THEN
- *
- * Compute (L**T \ B) -> B [ L**T \ (T \ (L \P**T * B) ) ]
- *
- CALL DTRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
- $ LDA, B( 2, 1 ), LDB)
- *
- * Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
- *
- DO K = N, 1, -1
- KP = IPIV( K )
- IF( KP.NE.K )
- $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
- END DO
- END IF
- *
- END IF
- *
- RETURN
- *
- * End of DSYTRS_AA
- *
- END
|