|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__4 = 4;
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static doublereal c_b17 = 0.;
- static doublereal c_b23 = 1.;
- static doublereal c_b39 = -.5;
- static doublereal c_b42 = -1.;
-
- /* > \brief \b DSYTRD_SY2SB */
-
- /* @generated from zhetrd_he2hb.f, fortran z -> d, Wed Dec 7 08:22:39 2016 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DSYTRD_SY2SB + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, */
- /* WORK, LWORK, INFO ) */
-
- /* IMPLICIT NONE */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, LDA, LDAB, LWORK, N, KD */
- /* DOUBLE PRECISION A( LDA, * ), AB( LDAB, * ), */
- /* TAU( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DSYTRD_SY2SB reduces a real symmetric matrix A to real symmetric */
- /* > band-diagonal form AB by a orthogonal similarity transformation: */
- /* > Q**T * A * Q = AB. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KD */
- /* > \verbatim */
- /* > KD is INTEGER */
- /* > The number of superdiagonals of the reduced matrix if UPLO = 'U', */
- /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
- /* > The reduced matrix is stored in the array AB. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* > N-by-N upper triangular part of A contains the upper */
- /* > triangular part of the matrix A, and the strictly lower */
- /* > triangular part of A is not referenced. If UPLO = 'L', the */
- /* > leading N-by-N lower triangular part of A contains the lower */
- /* > triangular part of the matrix A, and the strictly upper */
- /* > triangular part of A is not referenced. */
- /* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
- /* > of A are overwritten by the corresponding elements of the */
- /* > tridiagonal matrix T, and the elements above the first */
- /* > superdiagonal, with the array TAU, represent the orthogonal */
- /* > matrix Q as a product of elementary reflectors; if UPLO */
- /* > = 'L', the diagonal and first subdiagonal of A are over- */
- /* > written by the corresponding elements of the tridiagonal */
- /* > matrix T, and the elements below the first subdiagonal, with */
- /* > the array TAU, represent the orthogonal matrix Q as a product */
- /* > of elementary reflectors. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] AB */
- /* > \verbatim */
- /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
- /* > On exit, the upper or lower triangle of the symmetric band */
- /* > matrix A, stored in the first KD+1 rows of the array. The */
- /* > j-th column of A is stored in the j-th column of the array AB */
- /* > as follows: */
- /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
- /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAB */
- /* > \verbatim */
- /* > LDAB is INTEGER */
- /* > The leading dimension of the array AB. LDAB >= KD+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAU */
- /* > \verbatim */
- /* > TAU is DOUBLE PRECISION array, dimension (N-KD) */
- /* > The scalar factors of the elementary reflectors (see Further */
- /* > Details). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
- /* > On exit, if INFO = 0, or if LWORK=-1, */
- /* > WORK(1) returns the size of LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK which should be calculated */
- /* > by a workspace query. LWORK = MAX(1, LWORK_QUERY) */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > LWORK_QUERY = N*KD + N*f2cmax(KD,FACTOPTNB) + 2*KD*KD */
- /* > where FACTOPTNB is the blocking used by the QR or LQ */
- /* > algorithm, usually FACTOPTNB=128 is a good choice otherwise */
- /* > putting LWORK=-1 will provide the size of WORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup doubleSYcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Implemented by Azzam Haidar. */
- /* > */
- /* > All details are available on technical report, SC11, SC13 papers. */
- /* > */
- /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
- /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
- /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
- /* > of 2011 International Conference for High Performance Computing, */
- /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
- /* > Article 8 , 11 pages. */
- /* > http://doi.acm.org/10.1145/2063384.2063394 */
- /* > */
- /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
- /* > An improved parallel singular value algorithm and its implementation */
- /* > for multicore hardware, In Proceedings of 2013 International Conference */
- /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
- /* > Denver, Colorado, USA, 2013. */
- /* > Article 90, 12 pages. */
- /* > http://doi.acm.org/10.1145/2503210.2503292 */
- /* > */
- /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
- /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
- /* > calculations based on fine-grained memory aware tasks. */
- /* > International Journal of High Performance Computing Applications. */
- /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
- /* > http://hpc.sagepub.com/content/28/2/196 */
- /* > */
- /* > \endverbatim */
- /* > */
- /* > \verbatim */
- /* > */
- /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
- /* > reflectors */
- /* > */
- /* > Q = H(k)**T . . . H(2)**T H(1)**T, where k = n-kd. */
- /* > */
- /* > Each H(i) has the form */
- /* > */
- /* > H(i) = I - tau * v * v**T */
- /* > */
- /* > where tau is a real scalar, and v is a real vector with */
- /* > v(1:i+kd-1) = 0 and v(i+kd) = 1; conjg(v(i+kd+1:n)) is stored on exit in */
- /* > A(i,i+kd+1:n), and tau in TAU(i). */
- /* > */
- /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
- /* > reflectors */
- /* > */
- /* > Q = H(1) H(2) . . . H(k), where k = n-kd. */
- /* > */
- /* > Each H(i) has the form */
- /* > */
- /* > H(i) = I - tau * v * v**T */
- /* > */
- /* > where tau is a real scalar, and v is a real vector with */
- /* > v(kd+1:i) = 0 and v(i+kd+1) = 1; v(i+kd+2:n) is stored on exit in */
- /* > A(i+kd+2:n,i), and tau in TAU(i). */
- /* > */
- /* > The contents of A on exit are illustrated by the following examples */
- /* > with n = 5: */
- /* > */
- /* > if UPLO = 'U': if UPLO = 'L': */
- /* > */
- /* > ( ab ab/v1 v1 v1 v1 ) ( ab ) */
- /* > ( ab ab/v2 v2 v2 ) ( ab/v1 ab ) */
- /* > ( ab ab/v3 v3 ) ( v1 ab/v2 ab ) */
- /* > ( ab ab/v4 ) ( v1 v2 ab/v3 ab ) */
- /* > ( ab ) ( v1 v2 v3 ab/v4 ab ) */
- /* > */
- /* > where d and e denote diagonal and off-diagonal elements of T, and vi */
- /* > denotes an element of the vector defining H(i). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dsytrd_sy2sb_(char *uplo, integer *n, integer *kd,
- doublereal *a, integer *lda, doublereal *ab, integer *ldab,
- doublereal *tau, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4,
- i__5;
-
- /* Local variables */
- extern integer ilaenv2stage_(integer *, char *, char *, integer *,
- integer *, integer *, integer *);
- integer tpos, wpos, s1pos, s2pos, i__, j;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- integer iinfo;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer lwmin;
- extern /* Subroutine */ void dsymm_(char *, char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ void dsyr2k_(char *, char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- integer lk, pk, pn, lt;
- extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *);
- integer lw;
- extern /* Subroutine */ void dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlarft_(char *, char *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void dlaset_(char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- integer ls1;
- logical lquery;
- integer ls2, ldt, ldw, lds1, lds2;
-
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Determine the minimal workspace size required */
- /* and test the input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1 * 1;
- ab -= ab_offset;
- --tau;
- --work;
-
- /* Function Body */
- *info = 0;
- upper = lsame_(uplo, "U");
- lquery = *lwork == -1;
- lwmin = ilaenv2stage_(&c__4, "DSYTRD_SY2SB", "", n, kd, &c_n1, &c_n1);
- if (! upper && ! lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kd < 0) {
- *info = -3;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -5;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = *kd + 1;
- if (*ldab < f2cmax(i__1,i__2)) {
- *info = -7;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -10;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSYTRD_SY2SB", &i__1, (ftnlen)12);
- return;
- } else if (lquery) {
- work[1] = (doublereal) lwmin;
- return;
- }
-
- /* Quick return if possible */
- /* Copy the upper/lower portion of A into AB */
-
- if (*n <= *kd + 1) {
- if (upper) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- i__2 = *kd + 1;
- lk = f2cmin(i__2,i__);
- dcopy_(&lk, &a[i__ - lk + 1 + i__ * a_dim1], &c__1, &ab[*kd +
- 1 - lk + 1 + i__ * ab_dim1], &c__1);
- /* L100: */
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- i__2 = *kd + 1, i__3 = *n - i__ + 1;
- lk = f2cmin(i__2,i__3);
- dcopy_(&lk, &a[i__ + i__ * a_dim1], &c__1, &ab[i__ * ab_dim1
- + 1], &c__1);
- /* L110: */
- }
- }
- work[1] = 1.;
- return;
- }
-
- /* Determine the pointer position for the workspace */
-
- ldt = *kd;
- lds1 = *kd;
- lt = ldt * *kd;
- lw = *n * *kd;
- ls1 = lds1 * *kd;
- ls2 = lwmin - lt - lw - ls1;
- /* LS2 = N*MAX(KD,FACTOPTNB) */
- tpos = 1;
- wpos = tpos + lt;
- s1pos = wpos + lw;
- s2pos = s1pos + ls1;
- if (upper) {
- ldw = *kd;
- lds2 = *kd;
- } else {
- ldw = *n;
- lds2 = *n;
- }
-
-
- /* Set the workspace of the triangular matrix T to zero once such a */
- /* way every time T is generated the upper/lower portion will be always zero */
-
- dlaset_("A", &ldt, kd, &c_b17, &c_b17, &work[tpos], &ldt);
-
- if (upper) {
- i__1 = *n - *kd;
- i__2 = *kd;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- pn = *n - i__ - *kd + 1;
- /* Computing MIN */
- i__3 = *n - i__ - *kd + 1;
- pk = f2cmin(i__3,*kd);
-
- /* Compute the LQ factorization of the current block */
-
- dgelqf_(kd, &pn, &a[i__ + (i__ + *kd) * a_dim1], lda, &tau[i__], &
- work[s2pos], &ls2, &iinfo);
-
- /* Copy the upper portion of A into AB */
-
- i__3 = i__ + pk - 1;
- for (j = i__; j <= i__3; ++j) {
- /* Computing MIN */
- i__4 = *kd, i__5 = *n - j;
- lk = f2cmin(i__4,i__5) + 1;
- i__4 = *ldab - 1;
- dcopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j *
- ab_dim1], &i__4);
- /* L20: */
- }
-
- dlaset_("Lower", &pk, &pk, &c_b17, &c_b23, &a[i__ + (i__ + *kd) *
- a_dim1], lda);
-
- /* Form the matrix T */
-
- dlarft_("Forward", "Rowwise", &pn, &pk, &a[i__ + (i__ + *kd) *
- a_dim1], lda, &tau[i__], &work[tpos], &ldt);
-
- /* Compute W: */
-
- dgemm_("Conjugate", "No transpose", &pk, &pn, &pk, &c_b23, &work[
- tpos], &ldt, &a[i__ + (i__ + *kd) * a_dim1], lda, &c_b17,
- &work[s2pos], &lds2);
-
- dsymm_("Right", uplo, &pk, &pn, &c_b23, &a[i__ + *kd + (i__ + *kd)
- * a_dim1], lda, &work[s2pos], &lds2, &c_b17, &work[wpos],
- &ldw);
-
- dgemm_("No transpose", "Conjugate", &pk, &pk, &pn, &c_b23, &work[
- wpos], &ldw, &work[s2pos], &lds2, &c_b17, &work[s1pos], &
- lds1);
-
- dgemm_("No transpose", "No transpose", &pk, &pn, &pk, &c_b39, &
- work[s1pos], &lds1, &a[i__ + (i__ + *kd) * a_dim1], lda, &
- c_b23, &work[wpos], &ldw);
-
-
- /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
- /* an update of the form: A := A - V'*W - W'*V */
-
- dsyr2k_(uplo, "Conjugate", &pn, &pk, &c_b42, &a[i__ + (i__ + *kd)
- * a_dim1], lda, &work[wpos], &ldw, &c_b23, &a[i__ + *kd +
- (i__ + *kd) * a_dim1], lda);
- /* L10: */
- }
-
- /* Copy the upper band to AB which is the band storage matrix */
-
- i__2 = *n;
- for (j = *n - *kd + 1; j <= i__2; ++j) {
- /* Computing MIN */
- i__1 = *kd, i__3 = *n - j;
- lk = f2cmin(i__1,i__3) + 1;
- i__1 = *ldab - 1;
- dcopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j * ab_dim1], &
- i__1);
- /* L30: */
- }
-
- } else {
-
- /* Reduce the lower triangle of A to lower band matrix */
-
- i__2 = *n - *kd;
- i__1 = *kd;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- pn = *n - i__ - *kd + 1;
- /* Computing MIN */
- i__3 = *n - i__ - *kd + 1;
- pk = f2cmin(i__3,*kd);
-
- /* Compute the QR factorization of the current block */
-
- dgeqrf_(&pn, kd, &a[i__ + *kd + i__ * a_dim1], lda, &tau[i__], &
- work[s2pos], &ls2, &iinfo);
-
- /* Copy the upper portion of A into AB */
-
- i__3 = i__ + pk - 1;
- for (j = i__; j <= i__3; ++j) {
- /* Computing MIN */
- i__4 = *kd, i__5 = *n - j;
- lk = f2cmin(i__4,i__5) + 1;
- dcopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
- c__1);
- /* L50: */
- }
-
- dlaset_("Upper", &pk, &pk, &c_b17, &c_b23, &a[i__ + *kd + i__ *
- a_dim1], lda);
-
- /* Form the matrix T */
-
- dlarft_("Forward", "Columnwise", &pn, &pk, &a[i__ + *kd + i__ *
- a_dim1], lda, &tau[i__], &work[tpos], &ldt);
-
- /* Compute W: */
-
- dgemm_("No transpose", "No transpose", &pn, &pk, &pk, &c_b23, &a[
- i__ + *kd + i__ * a_dim1], lda, &work[tpos], &ldt, &c_b17,
- &work[s2pos], &lds2);
-
- dsymm_("Left", uplo, &pn, &pk, &c_b23, &a[i__ + *kd + (i__ + *kd)
- * a_dim1], lda, &work[s2pos], &lds2, &c_b17, &work[wpos],
- &ldw);
-
- dgemm_("Conjugate", "No transpose", &pk, &pk, &pn, &c_b23, &work[
- s2pos], &lds2, &work[wpos], &ldw, &c_b17, &work[s1pos], &
- lds1);
-
- dgemm_("No transpose", "No transpose", &pn, &pk, &pk, &c_b39, &a[
- i__ + *kd + i__ * a_dim1], lda, &work[s1pos], &lds1, &
- c_b23, &work[wpos], &ldw);
-
-
- /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
- /* an update of the form: A := A - V*W' - W*V' */
-
- dsyr2k_(uplo, "No transpose", &pn, &pk, &c_b42, &a[i__ + *kd +
- i__ * a_dim1], lda, &work[wpos], &ldw, &c_b23, &a[i__ + *
- kd + (i__ + *kd) * a_dim1], lda);
- /* ================================================================== */
- /* RESTORE A FOR COMPARISON AND CHECKING TO BE REMOVED */
- /* DO 45 J = I, I+PK-1 */
- /* LK = MIN( KD, N-J ) + 1 */
- /* CALL DCOPY( LK, AB( 1, J ), 1, A( J, J ), 1 ) */
- /* 45 CONTINUE */
- /* ================================================================== */
- /* L40: */
- }
-
- /* Copy the lower band to AB which is the band storage matrix */
-
- i__1 = *n;
- for (j = *n - *kd + 1; j <= i__1; ++j) {
- /* Computing MIN */
- i__2 = *kd, i__3 = *n - j;
- lk = f2cmin(i__2,i__3) + 1;
- dcopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
- c__1);
- /* L60: */
- }
- }
-
- work[1] = (doublereal) lwmin;
- return;
-
- /* End of DSYTRD_SY2SB */
-
- } /* dsytrd_sy2sb__ */
|