|
- *> \brief <b> DSYSVX computes the solution to system of linear equations A * X = B for SY matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYSVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysvx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysvx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysvx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
- * LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER FACT, UPLO
- * INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * ), IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSYSVX uses the diagonal pivoting factorization to compute the
- *> solution to a real system of linear equations A * X = B,
- *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
- *> matrices.
- *>
- *> Error bounds on the solution and a condition estimate are also
- *> provided.
- *> \endverbatim
- *
- *> \par Description:
- * =================
- *>
- *> \verbatim
- *>
- *> The following steps are performed:
- *>
- *> 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
- *> The form of the factorization is
- *> A = U * D * U**T, if UPLO = 'U', or
- *> A = L * D * L**T, if UPLO = 'L',
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, and D is symmetric and block diagonal with
- *> 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> 2. If some D(i,i)=0, so that D is exactly singular, then the routine
- *> returns with INFO = i. Otherwise, the factored form of A is used
- *> to estimate the condition number of the matrix A. If the
- *> reciprocal of the condition number is less than machine precision,
- *> INFO = N+1 is returned as a warning, but the routine still goes on
- *> to solve for X and compute error bounds as described below.
- *>
- *> 3. The system of equations is solved for X using the factored form
- *> of A.
- *>
- *> 4. Iterative refinement is applied to improve the computed solution
- *> matrix and calculate error bounds and backward error estimates
- *> for it.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] FACT
- *> \verbatim
- *> FACT is CHARACTER*1
- *> Specifies whether or not the factored form of A has been
- *> supplied on entry.
- *> = 'F': On entry, AF and IPIV contain the factored form of
- *> A. AF and IPIV will not be modified.
- *> = 'N': The matrix A will be copied to AF and factored.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrices B and X. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
- *> upper triangular part of A contains the upper triangular part
- *> of the matrix A, and the strictly lower triangular part of A
- *> is not referenced. If UPLO = 'L', the leading N-by-N lower
- *> triangular part of A contains the lower triangular part of
- *> the matrix A, and the strictly upper triangular part of A is
- *> not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
- *> If FACT = 'F', then AF is an input argument and on entry
- *> contains the block diagonal matrix D and the multipliers used
- *> to obtain the factor U or L from the factorization
- *> A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
- *>
- *> If FACT = 'N', then AF is an output argument and on exit
- *> returns the block diagonal matrix D and the multipliers used
- *> to obtain the factor U or L from the factorization
- *> A = U*D*U**T or A = L*D*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> If FACT = 'F', then IPIV is an input argument and on entry
- *> contains details of the interchanges and the block structure
- *> of D, as determined by DSYTRF.
- *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
- *> interchanged and D(k,k) is a 1-by-1 diagonal block.
- *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
- *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
- *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
- *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
- *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- *>
- *> If FACT = 'N', then IPIV is an output argument and on exit
- *> contains details of the interchanges and the block structure
- *> of D, as determined by DSYTRF.
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> The N-by-NRHS right hand side matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
- *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the array X. LDX >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The estimate of the reciprocal condition number of the matrix
- *> A. If RCOND is less than the machine precision (in
- *> particular, if RCOND = 0), the matrix is singular to working
- *> precision. This condition is indicated by a return code of
- *> INFO > 0.
- *> \endverbatim
- *>
- *> \param[out] FERR
- *> \verbatim
- *> FERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The estimated forward error bound for each solution vector
- *> X(j) (the j-th column of the solution matrix X).
- *> If XTRUE is the true solution corresponding to X(j), FERR(j)
- *> is an estimated upper bound for the magnitude of the largest
- *> element in (X(j) - XTRUE) divided by the magnitude of the
- *> largest element in X(j). The estimate is as reliable as
- *> the estimate for RCOND, and is almost always a slight
- *> overestimate of the true error.
- *> \endverbatim
- *>
- *> \param[out] BERR
- *> \verbatim
- *> BERR is DOUBLE PRECISION array, dimension (NRHS)
- *> The componentwise relative backward error of each solution
- *> vector X(j) (i.e., the smallest relative change in
- *> any element of A or B that makes X(j) an exact solution).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK. LWORK >= max(1,3*N), and for best
- *> performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
- *> NB is the optimal blocksize for DSYTRF.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, and i is
- *> <= N: D(i,i) is exactly zero. The factorization
- *> has been completed but the factor D is exactly
- *> singular, so the solution and error bounds could
- *> not be computed. RCOND = 0 is returned.
- *> = N+1: D is nonsingular, but RCOND is less than machine
- *> precision, meaning that the matrix is singular
- *> to working precision. Nevertheless, the
- *> solution and error bounds are computed because
- *> there are a number of situations where the
- *> computed solution can be more accurate than the
- *> value of RCOND would suggest.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYsolve
- *
- * =====================================================================
- SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B,
- $ LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER FACT, UPLO
- INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * ), IWORK( * )
- DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
- $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, NOFACT
- INTEGER LWKOPT, NB
- DOUBLE PRECISION ANORM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- DOUBLE PRECISION DLAMCH, DLANSY
- EXTERNAL LSAME, ILAENV, DLAMCH, DLANSY
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACPY, DSYCON, DSYRFS, DSYTRF, DSYTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- NOFACT = LSAME( FACT, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
- $ THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -11
- ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
- INFO = -13
- ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN
- INFO = -18
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- LWKOPT = MAX( 1, 3*N )
- IF( NOFACT ) THEN
- NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
- LWKOPT = MAX( LWKOPT, N*NB )
- END IF
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYSVX', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- IF( NOFACT ) THEN
- *
- * Compute the factorization A = U*D*U**T or A = L*D*L**T.
- *
- CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
- CALL DSYTRF( UPLO, N, AF, LDAF, IPIV, WORK, LWORK, INFO )
- *
- * Return if INFO is non-zero.
- *
- IF( INFO.GT.0 )THEN
- RCOND = ZERO
- RETURN
- END IF
- END IF
- *
- * Compute the norm of the matrix A.
- *
- ANORM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
- *
- * Compute the reciprocal of the condition number of A.
- *
- CALL DSYCON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK, IWORK,
- $ INFO )
- *
- * Compute the solution vectors X.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
- CALL DSYTRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
- *
- * Use iterative refinement to improve the computed solutions and
- * compute error bounds and backward error estimates for them.
- *
- CALL DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
- $ LDX, FERR, BERR, WORK, IWORK, INFO )
- *
- * Set INFO = N+1 if the matrix is singular to working precision.
- *
- IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
- $ INFO = N + 1
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DSYSVX
- *
- END
|