|
- *> \brief <b> DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSPEVX + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspevx.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspevx.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspevx.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
- * ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, RANGE, UPLO
- * INTEGER IL, INFO, IU, LDZ, M, N
- * DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- * INTEGER IFAIL( * ), IWORK( * )
- * DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSPEVX computes selected eigenvalues and, optionally, eigenvectors
- *> of a real symmetric matrix A in packed storage. Eigenvalues/vectors
- *> can be selected by specifying either a range of values or a range of
- *> indices for the desired eigenvalues.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RANGE
- *> \verbatim
- *> RANGE is CHARACTER*1
- *> = 'A': all eigenvalues will be found;
- *> = 'V': all eigenvalues in the half-open interval (VL,VU]
- *> will be found;
- *> = 'I': the IL-th through IU-th eigenvalues will be found.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, AP is overwritten by values generated during the
- *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
- *> and first superdiagonal of the tridiagonal matrix T overwrite
- *> the corresponding elements of A, and if UPLO = 'L', the
- *> diagonal and first subdiagonal of T overwrite the
- *> corresponding elements of A.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION
- *> If RANGE='V', the lower bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is DOUBLE PRECISION
- *> If RANGE='V', the upper bound of the interval to
- *> be searched for eigenvalues. VL < VU.
- *> Not referenced if RANGE = 'A' or 'I'.
- *> \endverbatim
- *>
- *> \param[in] IL
- *> \verbatim
- *> IL is INTEGER
- *> If RANGE='I', the index of the
- *> smallest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] IU
- *> \verbatim
- *> IU is INTEGER
- *> If RANGE='I', the index of the
- *> largest eigenvalue to be returned.
- *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
- *> Not referenced if RANGE = 'A' or 'V'.
- *> \endverbatim
- *>
- *> \param[in] ABSTOL
- *> \verbatim
- *> ABSTOL is DOUBLE PRECISION
- *> The absolute error tolerance for the eigenvalues.
- *> An approximate eigenvalue is accepted as converged
- *> when it is determined to lie in an interval [a,b]
- *> of width less than or equal to
- *>
- *> ABSTOL + EPS * max( |a|,|b| ) ,
- *>
- *> where EPS is the machine precision. If ABSTOL is less than
- *> or equal to zero, then EPS*|T| will be used in its place,
- *> where |T| is the 1-norm of the tridiagonal matrix obtained
- *> by reducing AP to tridiagonal form.
- *>
- *> Eigenvalues will be computed most accurately when ABSTOL is
- *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
- *> If this routine returns with INFO>0, indicating that some
- *> eigenvectors did not converge, try setting ABSTOL to
- *> 2*DLAMCH('S').
- *>
- *> See "Computing Small Singular Values of Bidiagonal Matrices
- *> with Guaranteed High Relative Accuracy," by Demmel and
- *> Kahan, LAPACK Working Note #3.
- *> \endverbatim
- *>
- *> \param[out] M
- *> \verbatim
- *> M is INTEGER
- *> The total number of eigenvalues found. 0 <= M <= N.
- *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the selected eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
- *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
- *> contain the orthonormal eigenvectors of the matrix A
- *> corresponding to the selected eigenvalues, with the i-th
- *> column of Z holding the eigenvector associated with W(i).
- *> If an eigenvector fails to converge, then that column of Z
- *> contains the latest approximation to the eigenvector, and the
- *> index of the eigenvector is returned in IFAIL.
- *> If JOBZ = 'N', then Z is not referenced.
- *> Note: the user must ensure that at least max(1,M) columns are
- *> supplied in the array Z; if RANGE = 'V', the exact value of M
- *> is not known in advance and an upper bound must be used.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (8*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (5*N)
- *> \endverbatim
- *>
- *> \param[out] IFAIL
- *> \verbatim
- *> IFAIL is INTEGER array, dimension (N)
- *> If JOBZ = 'V', then if INFO = 0, the first M elements of
- *> IFAIL are zero. If INFO > 0, then IFAIL contains the
- *> indices of the eigenvectors that failed to converge.
- *> If JOBZ = 'N', then IFAIL is not referenced.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, then i eigenvectors failed to converge.
- *> Their indices are stored in array IFAIL.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHEReigen
- *
- * =====================================================================
- SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
- $ ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
- $ INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, RANGE, UPLO
- INTEGER IL, INFO, IU, LDZ, M, N
- DOUBLE PRECISION ABSTOL, VL, VU
- * ..
- * .. Array Arguments ..
- INTEGER IFAIL( * ), IWORK( * )
- DOUBLE PRECISION AP( * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
- CHARACTER ORDER
- INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
- $ INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
- $ J, JJ, NSPLIT
- DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
- $ SIGMA, SMLNUM, TMP1, VLL, VUU
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANSP
- EXTERNAL LSAME, DLAMCH, DLANSP
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DOPGTR, DOPMTR, DSCAL, DSPTRD, DSTEBZ,
- $ DSTEIN, DSTEQR, DSTERF, DSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- ALLEIG = LSAME( RANGE, 'A' )
- VALEIG = LSAME( RANGE, 'V' )
- INDEIG = LSAME( RANGE, 'I' )
- *
- INFO = 0
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
- $ THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE
- IF( VALEIG ) THEN
- IF( N.GT.0 .AND. VU.LE.VL )
- $ INFO = -7
- ELSE IF( INDEIG ) THEN
- IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
- INFO = -9
- END IF
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
- $ INFO = -14
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSPEVX', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- M = 0
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( ALLEIG .OR. INDEIG ) THEN
- M = 1
- W( 1 ) = AP( 1 )
- ELSE
- IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
- M = 1
- W( 1 ) = AP( 1 )
- END IF
- END IF
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- ABSTLL = ABSTOL
- IF( VALEIG ) THEN
- VLL = VL
- VUU = VU
- ELSE
- VLL = ZERO
- VUU = ZERO
- END IF
- ANRM = DLANSP( 'M', UPLO, N, AP, WORK )
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL DSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
- IF( ABSTOL.GT.0 )
- $ ABSTLL = ABSTOL*SIGMA
- IF( VALEIG ) THEN
- VLL = VL*SIGMA
- VUU = VU*SIGMA
- END IF
- END IF
- *
- * Call DSPTRD to reduce symmetric packed matrix to tridiagonal form.
- *
- INDTAU = 1
- INDE = INDTAU + N
- INDD = INDE + N
- INDWRK = INDD + N
- CALL DSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
- $ WORK( INDTAU ), IINFO )
- *
- * If all eigenvalues are desired and ABSTOL is less than or equal
- * to zero, then call DSTERF or DOPGTR and SSTEQR. If this fails
- * for some eigenvalue, then try DSTEBZ.
- *
- TEST = .FALSE.
- IF (INDEIG) THEN
- IF (IL.EQ.1 .AND. IU.EQ.N) THEN
- TEST = .TRUE.
- END IF
- END IF
- IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
- CALL DCOPY( N, WORK( INDD ), 1, W, 1 )
- INDEE = INDWRK + 2*N
- IF( .NOT.WANTZ ) THEN
- CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
- CALL DSTERF( N, W, WORK( INDEE ), INFO )
- ELSE
- CALL DOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- CALL DCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
- CALL DSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
- $ WORK( INDWRK ), INFO )
- IF( INFO.EQ.0 ) THEN
- DO 10 I = 1, N
- IFAIL( I ) = 0
- 10 CONTINUE
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- M = N
- GO TO 20
- END IF
- INFO = 0
- END IF
- *
- * Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN.
- *
- IF( WANTZ ) THEN
- ORDER = 'B'
- ELSE
- ORDER = 'E'
- END IF
- INDIBL = 1
- INDISP = INDIBL + N
- INDIWO = INDISP + N
- CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
- $ WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWRK ),
- $ IWORK( INDIWO ), INFO )
- *
- IF( WANTZ ) THEN
- CALL DSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
- $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
- $ WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
- *
- * Apply orthogonal matrix used in reduction to tridiagonal
- * form to eigenvectors returned by DSTEIN.
- *
- CALL DOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- 20 CONTINUE
- IF( ISCALE.EQ.1 ) THEN
- IF( INFO.EQ.0 ) THEN
- IMAX = M
- ELSE
- IMAX = INFO - 1
- END IF
- CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
- END IF
- *
- * If eigenvalues are not in order, then sort them, along with
- * eigenvectors.
- *
- IF( WANTZ ) THEN
- DO 40 J = 1, M - 1
- I = 0
- TMP1 = W( J )
- DO 30 JJ = J + 1, M
- IF( W( JJ ).LT.TMP1 ) THEN
- I = JJ
- TMP1 = W( JJ )
- END IF
- 30 CONTINUE
- *
- IF( I.NE.0 ) THEN
- ITMP1 = IWORK( INDIBL+I-1 )
- W( I ) = W( J )
- IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
- W( J ) = TMP1
- IWORK( INDIBL+J-1 ) = ITMP1
- CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
- IF( INFO.NE.0 ) THEN
- ITMP1 = IFAIL( I )
- IFAIL( I ) = IFAIL( J )
- IFAIL( J ) = ITMP1
- END IF
- END IF
- 40 CONTINUE
- END IF
- *
- RETURN
- *
- * End of DSPEVX
- *
- END
|