|
- *> \brief \b DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DPTTS2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptts2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptts2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptts2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
- *
- * .. Scalar Arguments ..
- * INTEGER LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPTTS2 solves a tridiagonal system of the form
- *> A * X = B
- *> using the L*D*L**T factorization of A computed by DPTTRF. D is a
- *> diagonal matrix specified in the vector D, L is a unit bidiagonal
- *> matrix whose subdiagonal is specified in the vector E, and X and B
- *> are N by NRHS matrices.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the tridiagonal matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The n diagonal elements of the diagonal matrix D from the
- *> L*D*L**T factorization of A.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> The (n-1) subdiagonal elements of the unit bidiagonal factor
- *> L from the L*D*L**T factorization of A. E can also be regarded
- *> as the superdiagonal of the unit bidiagonal factor U from the
- *> factorization A = U**T*D*U.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the right hand side vectors B for the system of
- *> linear equations.
- *> On exit, the solution vectors, X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doublePTcomputational
- *
- * =====================================================================
- SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER I, J
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL
- * ..
- * .. Executable Statements ..
- *
- * Quick return if possible
- *
- IF( N.LE.1 ) THEN
- IF( N.EQ.1 )
- $ CALL DSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
- RETURN
- END IF
- *
- * Solve A * X = B using the factorization A = L*D*L**T,
- * overwriting each right hand side vector with its solution.
- *
- DO 30 J = 1, NRHS
- *
- * Solve L * x = b.
- *
- DO 10 I = 2, N
- B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
- 10 CONTINUE
- *
- * Solve D * L**T * x = b.
- *
- B( N, J ) = B( N, J ) / D( N )
- DO 20 I = N - 1, 1, -1
- B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
- 20 CONTINUE
- 30 CONTINUE
- *
- RETURN
- *
- * End of DPTTS2
- *
- END
|