|
- *> \brief \b DPOTRF2
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPOTRF2 computes the Cholesky factorization of a real symmetric
- *> positive definite matrix A using the recursive algorithm.
- *>
- *> The factorization has the form
- *> A = U**T * U, if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular.
- *>
- *> This is the recursive version of the algorithm. It divides
- *> the matrix into four submatrices:
- *>
- *> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
- *> A = [ -----|----- ] with n1 = n/2
- *> [ A21 | A22 ] n2 = n-n1
- *>
- *> The subroutine calls itself to factor A11. Update and scale A21
- *> or A12, update A22 then calls itself to factor A22.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the factor U or L from the Cholesky
- *> factorization A = U**T*U or A = L*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the leading minor of order i is not
- *> positive definite, and the factorization could not be
- *> completed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doublePOcomputational
- *
- * =====================================================================
- RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER N1, N2, IINFO
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL DSYRK, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DPOTRF2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * N=1 case
- *
- IF( N.EQ.1 ) THEN
- *
- * Test for non-positive-definiteness
- *
- IF( A( 1, 1 ).LE.ZERO.OR.DISNAN( A( 1, 1 ) ) ) THEN
- INFO = 1
- RETURN
- END IF
- *
- * Factor
- *
- A( 1, 1 ) = SQRT( A( 1, 1 ) )
- *
- * Use recursive code
- *
- ELSE
- N1 = N/2
- N2 = N-N1
- *
- * Factor A11
- *
- CALL DPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO )
- IF ( IINFO.NE.0 ) THEN
- INFO = IINFO
- RETURN
- END IF
- *
- * Compute the Cholesky factorization A = U**T*U
- *
- IF( UPPER ) THEN
- *
- * Update and scale A12
- *
- CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE,
- $ A( 1, 1 ), LDA, A( 1, N1+1 ), LDA )
- *
- * Update and factor A22
- *
- CALL DSYRK( UPLO, 'T', N2, N1, -ONE, A( 1, N1+1 ), LDA,
- $ ONE, A( N1+1, N1+1 ), LDA )
- CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
- IF ( IINFO.NE.0 ) THEN
- INFO = IINFO + N1
- RETURN
- END IF
- *
- * Compute the Cholesky factorization A = L*L**T
- *
- ELSE
- *
- * Update and scale A21
- *
- CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE,
- $ A( 1, 1 ), LDA, A( N1+1, 1 ), LDA )
- *
- * Update and factor A22
- *
- CALL DSYRK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA,
- $ ONE, A( N1+1, N1+1 ), LDA )
- CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
- IF ( IINFO.NE.0 ) THEN
- INFO = IINFO + N1
- RETURN
- END IF
- END IF
- END IF
- RETURN
- *
- * End of DPOTRF2
- *
- END
|