|
- *> \brief \b DPOTRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DPOTRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPOTRF computes the Cholesky factorization of a real symmetric
- *> positive definite matrix A.
- *>
- *> The factorization has the form
- *> A = U**T * U, if UPLO = 'U', or
- *> A = L * L**T, if UPLO = 'L',
- *> where U is an upper triangular matrix and L is lower triangular.
- *>
- *> This is the block version of the algorithm, calling Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
- *> N-by-N upper triangular part of A contains the upper
- *> triangular part of the matrix A, and the strictly lower
- *> triangular part of A is not referenced. If UPLO = 'L', the
- *> leading N-by-N lower triangular part of A contains the lower
- *> triangular part of the matrix A, and the strictly upper
- *> triangular part of A is not referenced.
- *>
- *> On exit, if INFO = 0, the factor U or L from the Cholesky
- *> factorization A = U**T*U or A = L*L**T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the leading minor of order i is not
- *> positive definite, and the factorization could not be
- *> completed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doublePOcomputational
- *
- * =====================================================================
- SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, JB, NB
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DPOTRF2, DSYRK, DTRSM, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DPOTRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.N ) THEN
- *
- * Use unblocked code.
- *
- CALL DPOTRF2( UPLO, N, A, LDA, INFO )
- ELSE
- *
- * Use blocked code.
- *
- IF( UPPER ) THEN
- *
- * Compute the Cholesky factorization A = U**T*U.
- *
- DO 10 J = 1, N, NB
- *
- * Update and factorize the current diagonal block and test
- * for non-positive-definiteness.
- *
- JB = MIN( NB, N-J+1 )
- CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
- $ A( 1, J ), LDA, ONE, A( J, J ), LDA )
- CALL DPOTRF2( 'Upper', JB, A( J, J ), LDA, INFO )
- IF( INFO.NE.0 )
- $ GO TO 30
- IF( J+JB.LE.N ) THEN
- *
- * Compute the current block row.
- *
- CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
- $ J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
- $ LDA, ONE, A( J, J+JB ), LDA )
- CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
- $ JB, N-J-JB+1, ONE, A( J, J ), LDA,
- $ A( J, J+JB ), LDA )
- END IF
- 10 CONTINUE
- *
- ELSE
- *
- * Compute the Cholesky factorization A = L*L**T.
- *
- DO 20 J = 1, N, NB
- *
- * Update and factorize the current diagonal block and test
- * for non-positive-definiteness.
- *
- JB = MIN( NB, N-J+1 )
- CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
- $ A( J, 1 ), LDA, ONE, A( J, J ), LDA )
- CALL DPOTRF2( 'Lower', JB, A( J, J ), LDA, INFO )
- IF( INFO.NE.0 )
- $ GO TO 30
- IF( J+JB.LE.N ) THEN
- *
- * Compute the current block column.
- *
- CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
- $ J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
- $ LDA, ONE, A( J+JB, J ), LDA )
- CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
- $ N-J-JB+1, JB, ONE, A( J, J ), LDA,
- $ A( J+JB, J ), LDA )
- END IF
- 20 CONTINUE
- END IF
- END IF
- GO TO 40
- *
- 30 CONTINUE
- INFO = INFO + J - 1
- *
- 40 CONTINUE
- RETURN
- *
- * End of DPOTRF
- *
- END
|