|
- *> \brief \b DPBEQU
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DPBEQU + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbequ.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbequ.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbequ.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, KD, LDAB, N
- * DOUBLE PRECISION AMAX, SCOND
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AB( LDAB, * ), S( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DPBEQU computes row and column scalings intended to equilibrate a
- *> symmetric positive definite band matrix A and reduce its condition
- *> number (with respect to the two-norm). S contains the scale factors,
- *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
- *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
- *> choice of S puts the condition number of B within a factor N of the
- *> smallest possible condition number over all possible diagonal
- *> scalings.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangular of A is stored;
- *> = 'L': Lower triangular of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in] AB
- *> \verbatim
- *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
- *> The upper or lower triangle of the symmetric band matrix A,
- *> stored in the first KD+1 rows of the array. The j-th column
- *> of A is stored in the j-th column of the array AB as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array A. LDAB >= KD+1.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, S contains the scale factors for A.
- *> \endverbatim
- *>
- *> \param[out] SCOND
- *> \verbatim
- *> SCOND is DOUBLE PRECISION
- *> If INFO = 0, S contains the ratio of the smallest S(i) to
- *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
- *> large nor too small, it is not worth scaling by S.
- *> \endverbatim
- *>
- *> \param[out] AMAX
- *> \verbatim
- *> AMAX is DOUBLE PRECISION
- *> Absolute value of largest matrix element. If AMAX is very
- *> close to overflow or very close to underflow, the matrix
- *> should be scaled.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, KD, LDAB, N
- DOUBLE PRECISION AMAX, SCOND
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AB( LDAB, * ), S( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER I, J
- DOUBLE PRECISION SMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( KD.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DPBEQU', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- SCOND = ONE
- AMAX = ZERO
- RETURN
- END IF
- *
- IF( UPPER ) THEN
- J = KD + 1
- ELSE
- J = 1
- END IF
- *
- * Initialize SMIN and AMAX.
- *
- S( 1 ) = AB( J, 1 )
- SMIN = S( 1 )
- AMAX = S( 1 )
- *
- * Find the minimum and maximum diagonal elements.
- *
- DO 10 I = 2, N
- S( I ) = AB( J, I )
- SMIN = MIN( SMIN, S( I ) )
- AMAX = MAX( AMAX, S( I ) )
- 10 CONTINUE
- *
- IF( SMIN.LE.ZERO ) THEN
- *
- * Find the first non-positive diagonal element and return.
- *
- DO 20 I = 1, N
- IF( S( I ).LE.ZERO ) THEN
- INFO = I
- RETURN
- END IF
- 20 CONTINUE
- ELSE
- *
- * Set the scale factors to the reciprocals
- * of the diagonal elements.
- *
- DO 30 I = 1, N
- S( I ) = ONE / SQRT( S( I ) )
- 30 CONTINUE
- *
- * Compute SCOND = min(S(I)) / max(S(I))
- *
- SCOND = SQRT( SMIN ) / SQRT( AMAX )
- END IF
- RETURN
- *
- * End of DPBEQU
- *
- END
|