|
- *> \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLASY2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
- * LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
- *
- * .. Scalar Arguments ..
- * LOGICAL LTRANL, LTRANR
- * INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
- * DOUBLE PRECISION SCALE, XNORM
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
- * $ X( LDX, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
- *>
- *> op(TL)*X + ISGN*X*op(TR) = SCALE*B,
- *>
- *> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
- *> -1. op(T) = T or T**T, where T**T denotes the transpose of T.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] LTRANL
- *> \verbatim
- *> LTRANL is LOGICAL
- *> On entry, LTRANL specifies the op(TL):
- *> = .FALSE., op(TL) = TL,
- *> = .TRUE., op(TL) = TL**T.
- *> \endverbatim
- *>
- *> \param[in] LTRANR
- *> \verbatim
- *> LTRANR is LOGICAL
- *> On entry, LTRANR specifies the op(TR):
- *> = .FALSE., op(TR) = TR,
- *> = .TRUE., op(TR) = TR**T.
- *> \endverbatim
- *>
- *> \param[in] ISGN
- *> \verbatim
- *> ISGN is INTEGER
- *> On entry, ISGN specifies the sign of the equation
- *> as described before. ISGN may only be 1 or -1.
- *> \endverbatim
- *>
- *> \param[in] N1
- *> \verbatim
- *> N1 is INTEGER
- *> On entry, N1 specifies the order of matrix TL.
- *> N1 may only be 0, 1 or 2.
- *> \endverbatim
- *>
- *> \param[in] N2
- *> \verbatim
- *> N2 is INTEGER
- *> On entry, N2 specifies the order of matrix TR.
- *> N2 may only be 0, 1 or 2.
- *> \endverbatim
- *>
- *> \param[in] TL
- *> \verbatim
- *> TL is DOUBLE PRECISION array, dimension (LDTL,2)
- *> On entry, TL contains an N1 by N1 matrix.
- *> \endverbatim
- *>
- *> \param[in] LDTL
- *> \verbatim
- *> LDTL is INTEGER
- *> The leading dimension of the matrix TL. LDTL >= max(1,N1).
- *> \endverbatim
- *>
- *> \param[in] TR
- *> \verbatim
- *> TR is DOUBLE PRECISION array, dimension (LDTR,2)
- *> On entry, TR contains an N2 by N2 matrix.
- *> \endverbatim
- *>
- *> \param[in] LDTR
- *> \verbatim
- *> LDTR is INTEGER
- *> The leading dimension of the matrix TR. LDTR >= max(1,N2).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,2)
- *> On entry, the N1 by N2 matrix B contains the right-hand
- *> side of the equation.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the matrix B. LDB >= max(1,N1).
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> On exit, SCALE contains the scale factor. SCALE is chosen
- *> less than or equal to 1 to prevent the solution overflowing.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (LDX,2)
- *> On exit, X contains the N1 by N2 solution.
- *> \endverbatim
- *>
- *> \param[in] LDX
- *> \verbatim
- *> LDX is INTEGER
- *> The leading dimension of the matrix X. LDX >= max(1,N1).
- *> \endverbatim
- *>
- *> \param[out] XNORM
- *> \verbatim
- *> XNORM is DOUBLE PRECISION
- *> On exit, XNORM is the infinity-norm of the solution.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> On exit, INFO is set to
- *> 0: successful exit.
- *> 1: TL and TR have too close eigenvalues, so TL or
- *> TR is perturbed to get a nonsingular equation.
- *> NOTE: In the interests of speed, this routine does not
- *> check the inputs for errors.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYauxiliary
- *
- * =====================================================================
- SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
- $ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- LOGICAL LTRANL, LTRANR
- INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
- DOUBLE PRECISION SCALE, XNORM
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
- $ X( LDX, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- DOUBLE PRECISION TWO, HALF, EIGHT
- PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL BSWAP, XSWAP
- INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
- DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
- $ TEMP, U11, U12, U22, XMAX
- * ..
- * .. Local Arrays ..
- LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
- INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
- $ LOCU22( 4 )
- DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DLAMCH
- EXTERNAL IDAMAX, DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DSWAP
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Data statements ..
- DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
- $ LOCU22 / 4, 3, 2, 1 /
- DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
- DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
- * ..
- * .. Executable Statements ..
- *
- * Do not check the input parameters for errors
- *
- INFO = 0
- *
- * Quick return if possible
- *
- IF( N1.EQ.0 .OR. N2.EQ.0 )
- $ RETURN
- *
- * Set constants to control overflow
- *
- EPS = DLAMCH( 'P' )
- SMLNUM = DLAMCH( 'S' ) / EPS
- SGN = ISGN
- *
- K = N1 + N1 + N2 - 2
- GO TO ( 10, 20, 30, 50 )K
- *
- * 1 by 1: TL11*X + SGN*X*TR11 = B11
- *
- 10 CONTINUE
- TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
- BET = ABS( TAU1 )
- IF( BET.LE.SMLNUM ) THEN
- TAU1 = SMLNUM
- BET = SMLNUM
- INFO = 1
- END IF
- *
- SCALE = ONE
- GAM = ABS( B( 1, 1 ) )
- IF( SMLNUM*GAM.GT.BET )
- $ SCALE = ONE / GAM
- *
- X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
- XNORM = ABS( X( 1, 1 ) )
- RETURN
- *
- * 1 by 2:
- * TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12]
- * [TR21 TR22]
- *
- 20 CONTINUE
- *
- SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
- $ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
- $ SMLNUM )
- TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
- TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
- IF( LTRANR ) THEN
- TMP( 2 ) = SGN*TR( 2, 1 )
- TMP( 3 ) = SGN*TR( 1, 2 )
- ELSE
- TMP( 2 ) = SGN*TR( 1, 2 )
- TMP( 3 ) = SGN*TR( 2, 1 )
- END IF
- BTMP( 1 ) = B( 1, 1 )
- BTMP( 2 ) = B( 1, 2 )
- GO TO 40
- *
- * 2 by 1:
- * op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11]
- * [TL21 TL22] [X21] [X21] [B21]
- *
- 30 CONTINUE
- SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
- $ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
- $ SMLNUM )
- TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
- TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
- IF( LTRANL ) THEN
- TMP( 2 ) = TL( 1, 2 )
- TMP( 3 ) = TL( 2, 1 )
- ELSE
- TMP( 2 ) = TL( 2, 1 )
- TMP( 3 ) = TL( 1, 2 )
- END IF
- BTMP( 1 ) = B( 1, 1 )
- BTMP( 2 ) = B( 2, 1 )
- 40 CONTINUE
- *
- * Solve 2 by 2 system using complete pivoting.
- * Set pivots less than SMIN to SMIN.
- *
- IPIV = IDAMAX( 4, TMP, 1 )
- U11 = TMP( IPIV )
- IF( ABS( U11 ).LE.SMIN ) THEN
- INFO = 1
- U11 = SMIN
- END IF
- U12 = TMP( LOCU12( IPIV ) )
- L21 = TMP( LOCL21( IPIV ) ) / U11
- U22 = TMP( LOCU22( IPIV ) ) - U12*L21
- XSWAP = XSWPIV( IPIV )
- BSWAP = BSWPIV( IPIV )
- IF( ABS( U22 ).LE.SMIN ) THEN
- INFO = 1
- U22 = SMIN
- END IF
- IF( BSWAP ) THEN
- TEMP = BTMP( 2 )
- BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
- BTMP( 1 ) = TEMP
- ELSE
- BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
- END IF
- SCALE = ONE
- IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
- $ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
- SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
- BTMP( 1 ) = BTMP( 1 )*SCALE
- BTMP( 2 ) = BTMP( 2 )*SCALE
- END IF
- X2( 2 ) = BTMP( 2 ) / U22
- X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
- IF( XSWAP ) THEN
- TEMP = X2( 2 )
- X2( 2 ) = X2( 1 )
- X2( 1 ) = TEMP
- END IF
- X( 1, 1 ) = X2( 1 )
- IF( N1.EQ.1 ) THEN
- X( 1, 2 ) = X2( 2 )
- XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
- ELSE
- X( 2, 1 ) = X2( 2 )
- XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
- END IF
- RETURN
- *
- * 2 by 2:
- * op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
- * [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
- *
- * Solve equivalent 4 by 4 system using complete pivoting.
- * Set pivots less than SMIN to SMIN.
- *
- 50 CONTINUE
- SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
- $ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
- SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
- $ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
- SMIN = MAX( EPS*SMIN, SMLNUM )
- BTMP( 1 ) = ZERO
- CALL DCOPY( 16, BTMP, 0, T16, 1 )
- T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
- T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
- T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
- T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
- IF( LTRANL ) THEN
- T16( 1, 2 ) = TL( 2, 1 )
- T16( 2, 1 ) = TL( 1, 2 )
- T16( 3, 4 ) = TL( 2, 1 )
- T16( 4, 3 ) = TL( 1, 2 )
- ELSE
- T16( 1, 2 ) = TL( 1, 2 )
- T16( 2, 1 ) = TL( 2, 1 )
- T16( 3, 4 ) = TL( 1, 2 )
- T16( 4, 3 ) = TL( 2, 1 )
- END IF
- IF( LTRANR ) THEN
- T16( 1, 3 ) = SGN*TR( 1, 2 )
- T16( 2, 4 ) = SGN*TR( 1, 2 )
- T16( 3, 1 ) = SGN*TR( 2, 1 )
- T16( 4, 2 ) = SGN*TR( 2, 1 )
- ELSE
- T16( 1, 3 ) = SGN*TR( 2, 1 )
- T16( 2, 4 ) = SGN*TR( 2, 1 )
- T16( 3, 1 ) = SGN*TR( 1, 2 )
- T16( 4, 2 ) = SGN*TR( 1, 2 )
- END IF
- BTMP( 1 ) = B( 1, 1 )
- BTMP( 2 ) = B( 2, 1 )
- BTMP( 3 ) = B( 1, 2 )
- BTMP( 4 ) = B( 2, 2 )
- *
- * Perform elimination
- *
- DO 100 I = 1, 3
- XMAX = ZERO
- DO 70 IP = I, 4
- DO 60 JP = I, 4
- IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
- XMAX = ABS( T16( IP, JP ) )
- IPSV = IP
- JPSV = JP
- END IF
- 60 CONTINUE
- 70 CONTINUE
- IF( IPSV.NE.I ) THEN
- CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
- TEMP = BTMP( I )
- BTMP( I ) = BTMP( IPSV )
- BTMP( IPSV ) = TEMP
- END IF
- IF( JPSV.NE.I )
- $ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
- JPIV( I ) = JPSV
- IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
- INFO = 1
- T16( I, I ) = SMIN
- END IF
- DO 90 J = I + 1, 4
- T16( J, I ) = T16( J, I ) / T16( I, I )
- BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
- DO 80 K = I + 1, 4
- T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- IF( ABS( T16( 4, 4 ) ).LT.SMIN ) THEN
- INFO = 1
- T16( 4, 4 ) = SMIN
- END IF
- SCALE = ONE
- IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
- $ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
- $ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
- $ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
- SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
- $ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
- BTMP( 1 ) = BTMP( 1 )*SCALE
- BTMP( 2 ) = BTMP( 2 )*SCALE
- BTMP( 3 ) = BTMP( 3 )*SCALE
- BTMP( 4 ) = BTMP( 4 )*SCALE
- END IF
- DO 120 I = 1, 4
- K = 5 - I
- TEMP = ONE / T16( K, K )
- TMP( K ) = BTMP( K )*TEMP
- DO 110 J = K + 1, 4
- TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
- 110 CONTINUE
- 120 CONTINUE
- DO 130 I = 1, 3
- IF( JPIV( 4-I ).NE.4-I ) THEN
- TEMP = TMP( 4-I )
- TMP( 4-I ) = TMP( JPIV( 4-I ) )
- TMP( JPIV( 4-I ) ) = TEMP
- END IF
- 130 CONTINUE
- X( 1, 1 ) = TMP( 1 )
- X( 2, 1 ) = TMP( 2 )
- X( 1, 2 ) = TMP( 3 )
- X( 2, 2 ) = TMP( 4 )
- XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
- $ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
- RETURN
- *
- * End of DLASY2
- *
- END
|