|
- *> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLASDA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
- * DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
- * PERM, GIVNUM, C, S, WORK, IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
- * $ K( * ), PERM( LDGCOL, * )
- * DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
- * $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
- * $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
- * $ Z( LDU, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Using a divide and conquer approach, DLASDA computes the singular
- *> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
- *> B with diagonal D and offdiagonal E, where M = N + SQRE. The
- *> algorithm computes the singular values in the SVD B = U * S * VT.
- *> The orthogonal matrices U and VT are optionally computed in
- *> compact form.
- *>
- *> A related subroutine, DLASD0, computes the singular values and
- *> the singular vectors in explicit form.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ICOMPQ
- *> \verbatim
- *> ICOMPQ is INTEGER
- *> Specifies whether singular vectors are to be computed
- *> in compact form, as follows
- *> = 0: Compute singular values only.
- *> = 1: Compute singular vectors of upper bidiagonal
- *> matrix in compact form.
- *> \endverbatim
- *>
- *> \param[in] SMLSIZ
- *> \verbatim
- *> SMLSIZ is INTEGER
- *> The maximum size of the subproblems at the bottom of the
- *> computation tree.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The row dimension of the upper bidiagonal matrix. This is
- *> also the dimension of the main diagonal array D.
- *> \endverbatim
- *>
- *> \param[in] SQRE
- *> \verbatim
- *> SQRE is INTEGER
- *> Specifies the column dimension of the bidiagonal matrix.
- *> = 0: The bidiagonal matrix has column dimension M = N;
- *> = 1: The bidiagonal matrix has column dimension M = N + 1.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension ( N )
- *> On entry D contains the main diagonal of the bidiagonal
- *> matrix. On exit D, if INFO = 0, contains its singular values.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension ( M-1 )
- *> Contains the subdiagonal entries of the bidiagonal matrix.
- *> On exit, E has been destroyed.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is DOUBLE PRECISION array,
- *> dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
- *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
- *> singular vector matrices of all subproblems at the bottom
- *> level.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER, LDU = > N.
- *> The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
- *> GIVNUM, and Z.
- *> \endverbatim
- *>
- *> \param[out] VT
- *> \verbatim
- *> VT is DOUBLE PRECISION array,
- *> dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
- *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
- *> singular vector matrices of all subproblems at the bottom
- *> level.
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER array,
- *> dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
- *> If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
- *> secular equation on the computation tree.
- *> \endverbatim
- *>
- *> \param[out] DIFL
- *> \verbatim
- *> DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
- *> where NLVL = floor(log_2 (N/SMLSIZ))).
- *> \endverbatim
- *>
- *> \param[out] DIFR
- *> \verbatim
- *> DIFR is DOUBLE PRECISION array,
- *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
- *> dimension ( N ) if ICOMPQ = 0.
- *> If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
- *> record distances between singular values on the I-th
- *> level and singular values on the (I -1)-th level, and
- *> DIFR(1:N, 2 * I ) contains the normalizing factors for
- *> the right singular vector matrix. See DLASD8 for details.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array,
- *> dimension ( LDU, NLVL ) if ICOMPQ = 1 and
- *> dimension ( N ) if ICOMPQ = 0.
- *> The first K elements of Z(1, I) contain the components of
- *> the deflation-adjusted updating row vector for subproblems
- *> on the I-th level.
- *> \endverbatim
- *>
- *> \param[out] POLES
- *> \verbatim
- *> POLES is DOUBLE PRECISION array,
- *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
- *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
- *> POLES(1, 2*I) contain the new and old singular values
- *> involved in the secular equations on the I-th level.
- *> \endverbatim
- *>
- *> \param[out] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER array,
- *> dimension ( N ) if ICOMPQ = 1, and not referenced if
- *> ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
- *> the number of Givens rotations performed on the I-th
- *> problem on the computation tree.
- *> \endverbatim
- *>
- *> \param[out] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array,
- *> dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
- *> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
- *> GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
- *> of Givens rotations performed on the I-th level on the
- *> computation tree.
- *> \endverbatim
- *>
- *> \param[in] LDGCOL
- *> \verbatim
- *> LDGCOL is INTEGER, LDGCOL = > N.
- *> The leading dimension of arrays GIVCOL and PERM.
- *> \endverbatim
- *>
- *> \param[out] PERM
- *> \verbatim
- *> PERM is INTEGER array,
- *> dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
- *> if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
- *> permutations done on the I-th level of the computation tree.
- *> \endverbatim
- *>
- *> \param[out] GIVNUM
- *> \verbatim
- *> GIVNUM is DOUBLE PRECISION array,
- *> dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not
- *> referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
- *> GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
- *> values of Givens rotations performed on the I-th level on
- *> the computation tree.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array,
- *> dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
- *> If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
- *> C( I ) contains the C-value of a Givens rotation related to
- *> the right null space of the I-th subproblem.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is DOUBLE PRECISION array, dimension ( N ) if
- *> ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
- *> and the I-th subproblem is not square, on exit, S( I )
- *> contains the S-value of a Givens rotation related to
- *> the right null space of the I-th subproblem.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (7*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = 1, a singular value did not converge
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ming Gu and Huan Ren, Computer Science Division, University of
- *> California at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
- $ DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
- $ PERM, GIVNUM, C, S, WORK, IWORK, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
- $ K( * ), PERM( LDGCOL, * )
- DOUBLE PRECISION C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
- $ E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
- $ S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
- $ Z( LDU, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
- $ J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
- $ NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
- $ NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
- DOUBLE PRECISION ALPHA, BETA
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
- INFO = -1
- ELSE IF( SMLSIZ.LT.3 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
- INFO = -4
- ELSE IF( LDU.LT.( N+SQRE ) ) THEN
- INFO = -8
- ELSE IF( LDGCOL.LT.N ) THEN
- INFO = -17
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLASDA', -INFO )
- RETURN
- END IF
- *
- M = N + SQRE
- *
- * If the input matrix is too small, call DLASDQ to find the SVD.
- *
- IF( N.LE.SMLSIZ ) THEN
- IF( ICOMPQ.EQ.0 ) THEN
- CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
- $ U, LDU, WORK, INFO )
- ELSE
- CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
- $ U, LDU, WORK, INFO )
- END IF
- RETURN
- END IF
- *
- * Book-keeping and set up the computation tree.
- *
- INODE = 1
- NDIML = INODE + N
- NDIMR = NDIML + N
- IDXQ = NDIMR + N
- IWK = IDXQ + N
- *
- NCC = 0
- NRU = 0
- *
- SMLSZP = SMLSIZ + 1
- VF = 1
- VL = VF + M
- NWORK1 = VL + M
- NWORK2 = NWORK1 + SMLSZP*SMLSZP
- *
- CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
- $ IWORK( NDIMR ), SMLSIZ )
- *
- * for the nodes on bottom level of the tree, solve
- * their subproblems by DLASDQ.
- *
- NDB1 = ( ND+1 ) / 2
- DO 30 I = NDB1, ND
- *
- * IC : center row of each node
- * NL : number of rows of left subproblem
- * NR : number of rows of right subproblem
- * NLF: starting row of the left subproblem
- * NRF: starting row of the right subproblem
- *
- I1 = I - 1
- IC = IWORK( INODE+I1 )
- NL = IWORK( NDIML+I1 )
- NLP1 = NL + 1
- NR = IWORK( NDIMR+I1 )
- NLF = IC - NL
- NRF = IC + 1
- IDXQI = IDXQ + NLF - 2
- VFI = VF + NLF - 1
- VLI = VL + NLF - 1
- SQREI = 1
- IF( ICOMPQ.EQ.0 ) THEN
- CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
- $ SMLSZP )
- CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
- $ E( NLF ), WORK( NWORK1 ), SMLSZP,
- $ WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
- $ WORK( NWORK2 ), INFO )
- ITEMP = NWORK1 + NL*SMLSZP
- CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
- CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
- ELSE
- CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
- CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
- CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
- $ E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
- $ U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
- CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
- CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
- END IF
- IF( INFO.NE.0 ) THEN
- RETURN
- END IF
- DO 10 J = 1, NL
- IWORK( IDXQI+J ) = J
- 10 CONTINUE
- IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
- SQREI = 0
- ELSE
- SQREI = 1
- END IF
- IDXQI = IDXQI + NLP1
- VFI = VFI + NLP1
- VLI = VLI + NLP1
- NRP1 = NR + SQREI
- IF( ICOMPQ.EQ.0 ) THEN
- CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
- $ SMLSZP )
- CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
- $ E( NRF ), WORK( NWORK1 ), SMLSZP,
- $ WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
- $ WORK( NWORK2 ), INFO )
- ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
- CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
- CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
- ELSE
- CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
- CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
- CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
- $ E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
- $ U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
- CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
- CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
- END IF
- IF( INFO.NE.0 ) THEN
- RETURN
- END IF
- DO 20 J = 1, NR
- IWORK( IDXQI+J ) = J
- 20 CONTINUE
- 30 CONTINUE
- *
- * Now conquer each subproblem bottom-up.
- *
- J = 2**NLVL
- DO 50 LVL = NLVL, 1, -1
- LVL2 = LVL*2 - 1
- *
- * Find the first node LF and last node LL on
- * the current level LVL.
- *
- IF( LVL.EQ.1 ) THEN
- LF = 1
- LL = 1
- ELSE
- LF = 2**( LVL-1 )
- LL = 2*LF - 1
- END IF
- DO 40 I = LF, LL
- IM1 = I - 1
- IC = IWORK( INODE+IM1 )
- NL = IWORK( NDIML+IM1 )
- NR = IWORK( NDIMR+IM1 )
- NLF = IC - NL
- NRF = IC + 1
- IF( I.EQ.LL ) THEN
- SQREI = SQRE
- ELSE
- SQREI = 1
- END IF
- VFI = VF + NLF - 1
- VLI = VL + NLF - 1
- IDXQI = IDXQ + NLF - 1
- ALPHA = D( IC )
- BETA = E( IC )
- IF( ICOMPQ.EQ.0 ) THEN
- CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
- $ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
- $ IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
- $ LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
- $ K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
- $ IWORK( IWK ), INFO )
- ELSE
- J = J - 1
- CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
- $ WORK( VFI ), WORK( VLI ), ALPHA, BETA,
- $ IWORK( IDXQI ), PERM( NLF, LVL ),
- $ GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
- $ GIVNUM( NLF, LVL2 ), LDU,
- $ POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
- $ DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
- $ C( J ), S( J ), WORK( NWORK1 ),
- $ IWORK( IWK ), INFO )
- END IF
- IF( INFO.NE.0 ) THEN
- RETURN
- END IF
- 40 CONTINUE
- 50 CONTINUE
- *
- RETURN
- *
- * End of DLASDA
- *
- END
|