|
- *> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLARRJ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
- * RTOL, OFFSET, W, WERR, WORK, IWORK,
- * PIVMIN, SPDIAM, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IFIRST, ILAST, INFO, N, OFFSET
- * DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION D( * ), E2( * ), W( * ),
- * $ WERR( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Given the initial eigenvalue approximations of T, DLARRJ
- *> does bisection to refine the eigenvalues of T,
- *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
- *> guesses for these eigenvalues are input in W, the corresponding estimate
- *> of the error in these guesses in WERR. During bisection, intervals
- *> [left, right] are maintained by storing their mid-points and
- *> semi-widths in the arrays W and WERR respectively.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> The N diagonal elements of T.
- *> \endverbatim
- *>
- *> \param[in] E2
- *> \verbatim
- *> E2 is DOUBLE PRECISION array, dimension (N-1)
- *> The Squares of the (N-1) subdiagonal elements of T.
- *> \endverbatim
- *>
- *> \param[in] IFIRST
- *> \verbatim
- *> IFIRST is INTEGER
- *> The index of the first eigenvalue to be computed.
- *> \endverbatim
- *>
- *> \param[in] ILAST
- *> \verbatim
- *> ILAST is INTEGER
- *> The index of the last eigenvalue to be computed.
- *> \endverbatim
- *>
- *> \param[in] RTOL
- *> \verbatim
- *> RTOL is DOUBLE PRECISION
- *> Tolerance for the convergence of the bisection intervals.
- *> An interval [LEFT,RIGHT] has converged if
- *> RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
- *> \endverbatim
- *>
- *> \param[in] OFFSET
- *> \verbatim
- *> OFFSET is INTEGER
- *> Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
- *> through ILAST-OFFSET elements of these arrays are to be used.
- *> \endverbatim
- *>
- *> \param[in,out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
- *> estimates of the eigenvalues of L D L^T indexed IFIRST through
- *> ILAST.
- *> On output, these estimates are refined.
- *> \endverbatim
- *>
- *> \param[in,out] WERR
- *> \verbatim
- *> WERR is DOUBLE PRECISION array, dimension (N)
- *> On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
- *> the errors in the estimates of the corresponding elements in W.
- *> On output, these errors are refined.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (2*N)
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (2*N)
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[in] PIVMIN
- *> \verbatim
- *> PIVMIN is DOUBLE PRECISION
- *> The minimum pivot in the Sturm sequence for T.
- *> \endverbatim
- *>
- *> \param[in] SPDIAM
- *> \verbatim
- *> SPDIAM is DOUBLE PRECISION
- *> The spectral diameter of T.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> Error flag.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Beresford Parlett, University of California, Berkeley, USA \n
- *> Jim Demmel, University of California, Berkeley, USA \n
- *> Inderjit Dhillon, University of Texas, Austin, USA \n
- *> Osni Marques, LBNL/NERSC, USA \n
- *> Christof Voemel, University of California, Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
- $ RTOL, OFFSET, W, WERR, WORK, IWORK,
- $ PIVMIN, SPDIAM, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IFIRST, ILAST, INFO, N, OFFSET
- DOUBLE PRECISION PIVMIN, RTOL, SPDIAM
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION D( * ), E2( * ), W( * ),
- $ WERR( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE, TWO, HALF
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
- $ HALF = 0.5D0 )
- INTEGER MAXITR
- * ..
- * .. Local Scalars ..
- INTEGER CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
- $ OLNINT, P, PREV, SAVI1
- DOUBLE PRECISION DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
- *
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- RETURN
- END IF
- *
- MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
- $ LOG( TWO ) ) + 2
- *
- * Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
- * The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
- * Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
- * for an unconverged interval is set to the index of the next unconverged
- * interval, and is -1 or 0 for a converged interval. Thus a linked
- * list of unconverged intervals is set up.
- *
-
- I1 = IFIRST
- I2 = ILAST
- * The number of unconverged intervals
- NINT = 0
- * The last unconverged interval found
- PREV = 0
- DO 75 I = I1, I2
- K = 2*I
- II = I - OFFSET
- LEFT = W( II ) - WERR( II )
- MID = W(II)
- RIGHT = W( II ) + WERR( II )
- WIDTH = RIGHT - MID
- TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
-
- * The following test prevents the test of converged intervals
- IF( WIDTH.LT.RTOL*TMP ) THEN
- * This interval has already converged and does not need refinement.
- * (Note that the gaps might change through refining the
- * eigenvalues, however, they can only get bigger.)
- * Remove it from the list.
- IWORK( K-1 ) = -1
- * Make sure that I1 always points to the first unconverged interval
- IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
- IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
- ELSE
- * unconverged interval found
- PREV = I
- * Make sure that [LEFT,RIGHT] contains the desired eigenvalue
- *
- * Do while( CNT(LEFT).GT.I-1 )
- *
- FAC = ONE
- 20 CONTINUE
- CNT = 0
- S = LEFT
- DPLUS = D( 1 ) - S
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- DO 30 J = 2, N
- DPLUS = D( J ) - S - E2( J-1 )/DPLUS
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- 30 CONTINUE
- IF( CNT.GT.I-1 ) THEN
- LEFT = LEFT - WERR( II )*FAC
- FAC = TWO*FAC
- GO TO 20
- END IF
- *
- * Do while( CNT(RIGHT).LT.I )
- *
- FAC = ONE
- 50 CONTINUE
- CNT = 0
- S = RIGHT
- DPLUS = D( 1 ) - S
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- DO 60 J = 2, N
- DPLUS = D( J ) - S - E2( J-1 )/DPLUS
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- 60 CONTINUE
- IF( CNT.LT.I ) THEN
- RIGHT = RIGHT + WERR( II )*FAC
- FAC = TWO*FAC
- GO TO 50
- END IF
- NINT = NINT + 1
- IWORK( K-1 ) = I + 1
- IWORK( K ) = CNT
- END IF
- WORK( K-1 ) = LEFT
- WORK( K ) = RIGHT
- 75 CONTINUE
-
-
- SAVI1 = I1
- *
- * Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
- * and while (ITER.LT.MAXITR)
- *
- ITER = 0
- 80 CONTINUE
- PREV = I1 - 1
- I = I1
- OLNINT = NINT
-
- DO 100 P = 1, OLNINT
- K = 2*I
- II = I - OFFSET
- NEXT = IWORK( K-1 )
- LEFT = WORK( K-1 )
- RIGHT = WORK( K )
- MID = HALF*( LEFT + RIGHT )
-
- * semiwidth of interval
- WIDTH = RIGHT - MID
- TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
-
- IF( ( WIDTH.LT.RTOL*TMP ) .OR.
- $ (ITER.EQ.MAXITR) )THEN
- * reduce number of unconverged intervals
- NINT = NINT - 1
- * Mark interval as converged.
- IWORK( K-1 ) = 0
- IF( I1.EQ.I ) THEN
- I1 = NEXT
- ELSE
- * Prev holds the last unconverged interval previously examined
- IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
- END IF
- I = NEXT
- GO TO 100
- END IF
- PREV = I
- *
- * Perform one bisection step
- *
- CNT = 0
- S = MID
- DPLUS = D( 1 ) - S
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- DO 90 J = 2, N
- DPLUS = D( J ) - S - E2( J-1 )/DPLUS
- IF( DPLUS.LT.ZERO ) CNT = CNT + 1
- 90 CONTINUE
- IF( CNT.LE.I-1 ) THEN
- WORK( K-1 ) = MID
- ELSE
- WORK( K ) = MID
- END IF
- I = NEXT
-
- 100 CONTINUE
- ITER = ITER + 1
- * do another loop if there are still unconverged intervals
- * However, in the last iteration, all intervals are accepted
- * since this is the best we can do.
- IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
- *
- *
- * At this point, all the intervals have converged
- DO 110 I = SAVI1, ILAST
- K = 2*I
- II = I - OFFSET
- * All intervals marked by '0' have been refined.
- IF( IWORK( K-1 ).EQ.0 ) THEN
- W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
- WERR( II ) = WORK( K ) - W( II )
- END IF
- 110 CONTINUE
- *
-
- RETURN
- *
- * End of DLARRJ
- *
- END
|