|
- *> \brief \b DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLARRC + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrc.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrc.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrc.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
- * EIGCNT, LCNT, RCNT, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBT
- * INTEGER EIGCNT, INFO, LCNT, N, RCNT
- * DOUBLE PRECISION PIVMIN, VL, VU
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> Find the number of eigenvalues of the symmetric tridiagonal matrix T
- *> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
- *> if JOBT = 'L'.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBT
- *> \verbatim
- *> JOBT is CHARACTER*1
- *> = 'T': Compute Sturm count for matrix T.
- *> = 'L': Compute Sturm count for matrix L D L^T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N > 0.
- *> \endverbatim
- *>
- *> \param[in] VL
- *> \verbatim
- *> VL is DOUBLE PRECISION
- *> The lower bound for the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] VU
- *> \verbatim
- *> VU is DOUBLE PRECISION
- *> The upper bound for the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
- *> JOBT = 'L': The N diagonal elements of the diagonal matrix D.
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N)
- *> JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
- *> JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
- *> \endverbatim
- *>
- *> \param[in] PIVMIN
- *> \verbatim
- *> PIVMIN is DOUBLE PRECISION
- *> The minimum pivot in the Sturm sequence for T.
- *> \endverbatim
- *>
- *> \param[out] EIGCNT
- *> \verbatim
- *> EIGCNT is INTEGER
- *> The number of eigenvalues of the symmetric tridiagonal matrix T
- *> that are in the interval (VL,VU]
- *> \endverbatim
- *>
- *> \param[out] LCNT
- *> \verbatim
- *> LCNT is INTEGER
- *> \endverbatim
- *>
- *> \param[out] RCNT
- *> \verbatim
- *> RCNT is INTEGER
- *> The left and right negcounts of the interval.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Beresford Parlett, University of California, Berkeley, USA \n
- *> Jim Demmel, University of California, Berkeley, USA \n
- *> Inderjit Dhillon, University of Texas, Austin, USA \n
- *> Osni Marques, LBNL/NERSC, USA \n
- *> Christof Voemel, University of California, Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
- $ EIGCNT, LCNT, RCNT, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBT
- INTEGER EIGCNT, INFO, LCNT, N, RCNT
- DOUBLE PRECISION PIVMIN, VL, VU
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- LOGICAL MATT
- DOUBLE PRECISION LPIVOT, RPIVOT, SL, SU, TMP, TMP2
-
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- LCNT = 0
- RCNT = 0
- EIGCNT = 0
- *
- * Quick return if possible
- *
- IF( N.LE.0 ) THEN
- RETURN
- END IF
- *
- MATT = LSAME( JOBT, 'T' )
-
-
- IF (MATT) THEN
- * Sturm sequence count on T
- LPIVOT = D( 1 ) - VL
- RPIVOT = D( 1 ) - VU
- IF( LPIVOT.LE.ZERO ) THEN
- LCNT = LCNT + 1
- ENDIF
- IF( RPIVOT.LE.ZERO ) THEN
- RCNT = RCNT + 1
- ENDIF
- DO 10 I = 1, N-1
- TMP = E(I)**2
- LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
- RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
- IF( LPIVOT.LE.ZERO ) THEN
- LCNT = LCNT + 1
- ENDIF
- IF( RPIVOT.LE.ZERO ) THEN
- RCNT = RCNT + 1
- ENDIF
- 10 CONTINUE
- ELSE
- * Sturm sequence count on L D L^T
- SL = -VL
- SU = -VU
- DO 20 I = 1, N - 1
- LPIVOT = D( I ) + SL
- RPIVOT = D( I ) + SU
- IF( LPIVOT.LE.ZERO ) THEN
- LCNT = LCNT + 1
- ENDIF
- IF( RPIVOT.LE.ZERO ) THEN
- RCNT = RCNT + 1
- ENDIF
- TMP = E(I) * D(I) * E(I)
- *
- TMP2 = TMP / LPIVOT
- IF( TMP2.EQ.ZERO ) THEN
- SL = TMP - VL
- ELSE
- SL = SL*TMP2 - VL
- END IF
- *
- TMP2 = TMP / RPIVOT
- IF( TMP2.EQ.ZERO ) THEN
- SU = TMP - VU
- ELSE
- SU = SU*TMP2 - VU
- END IF
- 20 CONTINUE
- LPIVOT = D( N ) + SL
- RPIVOT = D( N ) + SU
- IF( LPIVOT.LE.ZERO ) THEN
- LCNT = LCNT + 1
- ENDIF
- IF( RPIVOT.LE.ZERO ) THEN
- RCNT = RCNT + 1
- ENDIF
- ENDIF
- EIGCNT = RCNT - LCNT
-
- RETURN
- *
- * End of DLARRC
- *
- END
|