|
- *> \brief \b DLANSF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix in RFP format.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLANSF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION DLANSF( NORM, TRANSR, UPLO, N, A, WORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER NORM, TRANSR, UPLO
- * INTEGER N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( 0: * ), WORK( 0: * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLANSF returns the value of the one norm, or the Frobenius norm, or
- *> the infinity norm, or the element of largest absolute value of a
- *> real symmetric matrix A in RFP format.
- *> \endverbatim
- *>
- *> \return DLANSF
- *> \verbatim
- *>
- *> DLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
- *> (
- *> ( norm1(A), NORM = '1', 'O' or 'o'
- *> (
- *> ( normI(A), NORM = 'I' or 'i'
- *> (
- *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
- *>
- *> where norm1 denotes the one norm of a matrix (maximum column sum),
- *> normI denotes the infinity norm of a matrix (maximum row sum) and
- *> normF denotes the Frobenius norm of a matrix (square root of sum of
- *> squares). Note that max(abs(A(i,j))) is not a matrix norm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies the value to be returned in DLANSF as described
- *> above.
- *> \endverbatim
- *>
- *> \param[in] TRANSR
- *> \verbatim
- *> TRANSR is CHARACTER*1
- *> Specifies whether the RFP format of A is normal or
- *> transposed format.
- *> = 'N': RFP format is Normal;
- *> = 'T': RFP format is Transpose.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> On entry, UPLO specifies whether the RFP matrix A came from
- *> an upper or lower triangular matrix as follows:
- *> = 'U': RFP A came from an upper triangular matrix;
- *> = 'L': RFP A came from a lower triangular matrix.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0. When N = 0, DLANSF is
- *> set to zero.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
- *> On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
- *> part of the symmetric matrix A stored in RFP format. See the
- *> "Notes" below for more details.
- *> Unchanged on exit.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
- *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
- *> WORK is not referenced.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> We first consider Rectangular Full Packed (RFP) Format when N is
- *> even. We give an example where N = 6.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 05 00
- *> 11 12 13 14 15 10 11
- *> 22 23 24 25 20 21 22
- *> 33 34 35 30 31 32 33
- *> 44 45 40 41 42 43 44
- *> 55 50 51 52 53 54 55
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
- *> the transpose of the first three columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
- *> the transpose of the last three columns of AP lower.
- *> This covers the case N even and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 03 04 05 33 43 53
- *> 13 14 15 00 44 54
- *> 23 24 25 10 11 55
- *> 33 34 35 20 21 22
- *> 00 44 45 30 31 32
- *> 01 11 55 40 41 42
- *> 02 12 22 50 51 52
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *>
- *> RFP A RFP A
- *>
- *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
- *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
- *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
- *>
- *>
- *> We then consider Rectangular Full Packed (RFP) Format when N is
- *> odd. We give an example where N = 5.
- *>
- *> AP is Upper AP is Lower
- *>
- *> 00 01 02 03 04 00
- *> 11 12 13 14 10 11
- *> 22 23 24 20 21 22
- *> 33 34 30 31 32 33
- *> 44 40 41 42 43 44
- *>
- *>
- *> Let TRANSR = 'N'. RFP holds AP as follows:
- *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
- *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
- *> the transpose of the first two columns of AP upper.
- *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
- *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
- *> the transpose of the last two columns of AP lower.
- *> This covers the case N odd and TRANSR = 'N'.
- *>
- *> RFP A RFP A
- *>
- *> 02 03 04 00 33 43
- *> 12 13 14 10 11 44
- *> 22 23 24 20 21 22
- *> 00 33 34 30 31 32
- *> 01 11 44 40 41 42
- *>
- *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
- *> transpose of RFP A above. One therefore gets:
- *>
- *> RFP A RFP A
- *>
- *> 02 12 22 00 01 00 10 20 30 40 50
- *> 03 13 23 33 11 33 11 21 31 41 51
- *> 04 14 24 34 44 43 44 22 32 42 52
- *> \endverbatim
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION DLANSF( NORM, TRANSR, UPLO, N, A, WORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER NORM, TRANSR, UPLO
- INTEGER N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( 0: * ), WORK( 0: * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, J, IFM, ILU, NOE, N1, K, L, LDA
- DOUBLE PRECISION SCALE, S, VALUE, AA, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME, DISNAN
- EXTERNAL LSAME, DISNAN
- * ..
- * .. External Subroutines ..
- EXTERNAL DLASSQ
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- IF( N.EQ.0 ) THEN
- DLANSF = ZERO
- RETURN
- ELSE IF( N.EQ.1 ) THEN
- DLANSF = ABS( A(0) )
- RETURN
- END IF
- *
- * set noe = 1 if n is odd. if n is even set noe=0
- *
- NOE = 1
- IF( MOD( N, 2 ).EQ.0 )
- $ NOE = 0
- *
- * set ifm = 0 when form='T or 't' and 1 otherwise
- *
- IFM = 1
- IF( LSAME( TRANSR, 'T' ) )
- $ IFM = 0
- *
- * set ilu = 0 when uplo='U or 'u' and 1 otherwise
- *
- ILU = 1
- IF( LSAME( UPLO, 'U' ) )
- $ ILU = 0
- *
- * set lda = (n+1)/2 when ifm = 0
- * set lda = n when ifm = 1 and noe = 1
- * set lda = n+1 when ifm = 1 and noe = 0
- *
- IF( IFM.EQ.1 ) THEN
- IF( NOE.EQ.1 ) THEN
- LDA = N
- ELSE
- * noe=0
- LDA = N + 1
- END IF
- ELSE
- * ifm=0
- LDA = ( N+1 ) / 2
- END IF
- *
- IF( LSAME( NORM, 'M' ) ) THEN
- *
- * Find max(abs(A(i,j))).
- *
- K = ( N+1 ) / 2
- VALUE = ZERO
- IF( NOE.EQ.1 ) THEN
- * n is odd
- IF( IFM.EQ.1 ) THEN
- * A is n by k
- DO J = 0, K - 1
- DO I = 0, N - 1
- TEMP = ABS( A( I+J*LDA ) )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END DO
- ELSE
- * xpose case; A is k by n
- DO J = 0, N - 1
- DO I = 0, K - 1
- TEMP = ABS( A( I+J*LDA ) )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END DO
- END IF
- ELSE
- * n is even
- IF( IFM.EQ.1 ) THEN
- * A is n+1 by k
- DO J = 0, K - 1
- DO I = 0, N
- TEMP = ABS( A( I+J*LDA ) )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END DO
- ELSE
- * xpose case; A is k by n+1
- DO J = 0, N
- DO I = 0, K - 1
- TEMP = ABS( A( I+J*LDA ) )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END DO
- END IF
- END IF
- ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
- $ ( NORM.EQ.'1' ) ) THEN
- *
- * Find normI(A) ( = norm1(A), since A is symmetric).
- *
- IF( IFM.EQ.1 ) THEN
- K = N / 2
- IF( NOE.EQ.1 ) THEN
- * n is odd
- IF( ILU.EQ.0 ) THEN
- DO I = 0, K - 1
- WORK( I ) = ZERO
- END DO
- DO J = 0, K
- S = ZERO
- DO I = 0, K + J - 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(i,j+k)
- S = S + AA
- WORK( I ) = WORK( I ) + AA
- END DO
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,j+k)
- WORK( J+K ) = S + AA
- IF( I.EQ.K+K )
- $ GO TO 10
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(j,j)
- WORK( J ) = WORK( J ) + AA
- S = ZERO
- DO L = J + 1, K - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(l,j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- 10 CONTINUE
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- ELSE
- * ilu = 1
- K = K + 1
- * k=(n+1)/2 for n odd and ilu=1
- DO I = K, N - 1
- WORK( I ) = ZERO
- END DO
- DO J = K - 1, 0, -1
- S = ZERO
- DO I = 0, J - 2
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,i+k)
- S = S + AA
- WORK( I+K ) = WORK( I+K ) + AA
- END DO
- IF( J.GT.0 ) THEN
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,j+k)
- S = S + AA
- WORK( I+K ) = WORK( I+K ) + S
- * i=j
- I = I + 1
- END IF
- AA = ABS( A( I+J*LDA ) )
- * -> A(j,j)
- WORK( J ) = AA
- S = ZERO
- DO L = J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(l,j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END IF
- ELSE
- * n is even
- IF( ILU.EQ.0 ) THEN
- DO I = 0, K - 1
- WORK( I ) = ZERO
- END DO
- DO J = 0, K - 1
- S = ZERO
- DO I = 0, K + J - 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(i,j+k)
- S = S + AA
- WORK( I ) = WORK( I ) + AA
- END DO
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,j+k)
- WORK( J+K ) = S + AA
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(j,j)
- WORK( J ) = WORK( J ) + AA
- S = ZERO
- DO L = J + 1, K - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(l,j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- ELSE
- * ilu = 1
- DO I = K, N - 1
- WORK( I ) = ZERO
- END DO
- DO J = K - 1, 0, -1
- S = ZERO
- DO I = 0, J - 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,i+k)
- S = S + AA
- WORK( I+K ) = WORK( I+K ) + AA
- END DO
- AA = ABS( A( I+J*LDA ) )
- * -> A(j+k,j+k)
- S = S + AA
- WORK( I+K ) = WORK( I+K ) + S
- * i=j
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(j,j)
- WORK( J ) = AA
- S = ZERO
- DO L = J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * -> A(l,j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END IF
- END IF
- ELSE
- * ifm=0
- K = N / 2
- IF( NOE.EQ.1 ) THEN
- * n is odd
- IF( ILU.EQ.0 ) THEN
- N1 = K
- * n/2
- K = K + 1
- * k is the row size and lda
- DO I = N1, N - 1
- WORK( I ) = ZERO
- END DO
- DO J = 0, N1 - 1
- S = ZERO
- DO I = 0, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,n1+i)
- WORK( I+N1 ) = WORK( I+N1 ) + AA
- S = S + AA
- END DO
- WORK( J ) = S
- END DO
- * j=n1=k-1 is special
- S = ABS( A( 0+J*LDA ) )
- * A(k-1,k-1)
- DO I = 1, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(k-1,i+n1)
- WORK( I+N1 ) = WORK( I+N1 ) + AA
- S = S + AA
- END DO
- WORK( J ) = WORK( J ) + S
- DO J = K, N - 1
- S = ZERO
- DO I = 0, J - K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(i,j-k)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- * i=j-k
- AA = ABS( A( I+J*LDA ) )
- * A(j-k,j-k)
- S = S + AA
- WORK( J-K ) = WORK( J-K ) + S
- I = I + 1
- S = ABS( A( I+J*LDA ) )
- * A(j,j)
- DO L = J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,l)
- WORK( L ) = WORK( L ) + AA
- S = S + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- ELSE
- * ilu=1
- K = K + 1
- * k=(n+1)/2 for n odd and ilu=1
- DO I = K, N - 1
- WORK( I ) = ZERO
- END DO
- DO J = 0, K - 2
- * process
- S = ZERO
- DO I = 0, J - 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- AA = ABS( A( I+J*LDA ) )
- * i=j so process of A(j,j)
- S = S + AA
- WORK( J ) = S
- * is initialised here
- I = I + 1
- * i=j process A(j+k,j+k)
- AA = ABS( A( I+J*LDA ) )
- S = AA
- DO L = K + J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * A(l,k+j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( K+J ) = WORK( K+J ) + S
- END DO
- * j=k-1 is special :process col A(k-1,0:k-1)
- S = ZERO
- DO I = 0, K - 2
- AA = ABS( A( I+J*LDA ) )
- * A(k,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- * i=k-1
- AA = ABS( A( I+J*LDA ) )
- * A(k-1,k-1)
- S = S + AA
- WORK( I ) = S
- * done with col j=k+1
- DO J = K, N - 1
- * process col j of A = A(j,0:k-1)
- S = ZERO
- DO I = 0, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END IF
- ELSE
- * n is even
- IF( ILU.EQ.0 ) THEN
- DO I = K, N - 1
- WORK( I ) = ZERO
- END DO
- DO J = 0, K - 1
- S = ZERO
- DO I = 0, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,i+k)
- WORK( I+K ) = WORK( I+K ) + AA
- S = S + AA
- END DO
- WORK( J ) = S
- END DO
- * j=k
- AA = ABS( A( 0+J*LDA ) )
- * A(k,k)
- S = AA
- DO I = 1, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(k,k+i)
- WORK( I+K ) = WORK( I+K ) + AA
- S = S + AA
- END DO
- WORK( J ) = WORK( J ) + S
- DO J = K + 1, N - 1
- S = ZERO
- DO I = 0, J - 2 - K
- AA = ABS( A( I+J*LDA ) )
- * A(i,j-k-1)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- * i=j-1-k
- AA = ABS( A( I+J*LDA ) )
- * A(j-k-1,j-k-1)
- S = S + AA
- WORK( J-K-1 ) = WORK( J-K-1 ) + S
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,j)
- S = AA
- DO L = J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * A(j,l)
- WORK( L ) = WORK( L ) + AA
- S = S + AA
- END DO
- WORK( J ) = WORK( J ) + S
- END DO
- * j=n
- S = ZERO
- DO I = 0, K - 2
- AA = ABS( A( I+J*LDA ) )
- * A(i,k-1)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- * i=k-1
- AA = ABS( A( I+J*LDA ) )
- * A(k-1,k-1)
- S = S + AA
- WORK( I ) = WORK( I ) + S
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- ELSE
- * ilu=1
- DO I = K, N - 1
- WORK( I ) = ZERO
- END DO
- * j=0 is special :process col A(k:n-1,k)
- S = ABS( A( 0 ) )
- * A(k,k)
- DO I = 1, K - 1
- AA = ABS( A( I ) )
- * A(k+i,k)
- WORK( I+K ) = WORK( I+K ) + AA
- S = S + AA
- END DO
- WORK( K ) = WORK( K ) + S
- DO J = 1, K - 1
- * process
- S = ZERO
- DO I = 0, J - 2
- AA = ABS( A( I+J*LDA ) )
- * A(j-1,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- AA = ABS( A( I+J*LDA ) )
- * i=j-1 so process of A(j-1,j-1)
- S = S + AA
- WORK( J-1 ) = S
- * is initialised here
- I = I + 1
- * i=j process A(j+k,j+k)
- AA = ABS( A( I+J*LDA ) )
- S = AA
- DO L = K + J + 1, N - 1
- I = I + 1
- AA = ABS( A( I+J*LDA ) )
- * A(l,k+j)
- S = S + AA
- WORK( L ) = WORK( L ) + AA
- END DO
- WORK( K+J ) = WORK( K+J ) + S
- END DO
- * j=k is special :process col A(k,0:k-1)
- S = ZERO
- DO I = 0, K - 2
- AA = ABS( A( I+J*LDA ) )
- * A(k,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- * i=k-1
- AA = ABS( A( I+J*LDA ) )
- * A(k-1,k-1)
- S = S + AA
- WORK( I ) = S
- * done with col j=k+1
- DO J = K + 1, N
- * process col j-1 of A = A(j-1,0:k-1)
- S = ZERO
- DO I = 0, K - 1
- AA = ABS( A( I+J*LDA ) )
- * A(j-1,i)
- WORK( I ) = WORK( I ) + AA
- S = S + AA
- END DO
- WORK( J-1 ) = WORK( J-1 ) + S
- END DO
- VALUE = WORK( 0 )
- DO I = 1, N-1
- TEMP = WORK( I )
- IF( VALUE .LT. TEMP .OR. DISNAN( TEMP ) )
- $ VALUE = TEMP
- END DO
- END IF
- END IF
- END IF
- ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
- *
- * Find normF(A).
- *
- K = ( N+1 ) / 2
- SCALE = ZERO
- S = ONE
- IF( NOE.EQ.1 ) THEN
- * n is odd
- IF( IFM.EQ.1 ) THEN
- * A is normal
- IF( ILU.EQ.0 ) THEN
- * A is upper
- DO J = 0, K - 3
- CALL DLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
- * L at A(k,0)
- END DO
- DO J = 0, K - 1
- CALL DLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
- * trap U at A(0,0)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K-1, A( K ), LDA+1, SCALE, S )
- * tri L at A(k,0)
- CALL DLASSQ( K, A( K-1 ), LDA+1, SCALE, S )
- * tri U at A(k-1,0)
- ELSE
- * ilu=1 & A is lower
- DO J = 0, K - 1
- CALL DLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
- * trap L at A(0,0)
- END DO
- DO J = 0, K - 2
- CALL DLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
- * U at A(0,1)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( 0 ), LDA+1, SCALE, S )
- * tri L at A(0,0)
- CALL DLASSQ( K-1, A( 0+LDA ), LDA+1, SCALE, S )
- * tri U at A(0,1)
- END IF
- ELSE
- * A is xpose
- IF( ILU.EQ.0 ) THEN
- * A**T is upper
- DO J = 1, K - 2
- CALL DLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
- * U at A(0,k)
- END DO
- DO J = 0, K - 2
- CALL DLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
- * k by k-1 rect. at A(0,0)
- END DO
- DO J = 0, K - 2
- CALL DLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
- $ SCALE, S )
- * L at A(0,k-1)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K-1, A( 0+K*LDA ), LDA+1, SCALE, S )
- * tri U at A(0,k)
- CALL DLASSQ( K, A( 0+( K-1 )*LDA ), LDA+1, SCALE, S )
- * tri L at A(0,k-1)
- ELSE
- * A**T is lower
- DO J = 1, K - 1
- CALL DLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
- * U at A(0,0)
- END DO
- DO J = K, N - 1
- CALL DLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
- * k by k-1 rect. at A(0,k)
- END DO
- DO J = 0, K - 3
- CALL DLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
- * L at A(1,0)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( 0 ), LDA+1, SCALE, S )
- * tri U at A(0,0)
- CALL DLASSQ( K-1, A( 1 ), LDA+1, SCALE, S )
- * tri L at A(1,0)
- END IF
- END IF
- ELSE
- * n is even
- IF( IFM.EQ.1 ) THEN
- * A is normal
- IF( ILU.EQ.0 ) THEN
- * A is upper
- DO J = 0, K - 2
- CALL DLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
- * L at A(k+1,0)
- END DO
- DO J = 0, K - 1
- CALL DLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
- * trap U at A(0,0)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( K+1 ), LDA+1, SCALE, S )
- * tri L at A(k+1,0)
- CALL DLASSQ( K, A( K ), LDA+1, SCALE, S )
- * tri U at A(k,0)
- ELSE
- * ilu=1 & A is lower
- DO J = 0, K - 1
- CALL DLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
- * trap L at A(1,0)
- END DO
- DO J = 1, K - 1
- CALL DLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
- * U at A(0,0)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( 1 ), LDA+1, SCALE, S )
- * tri L at A(1,0)
- CALL DLASSQ( K, A( 0 ), LDA+1, SCALE, S )
- * tri U at A(0,0)
- END IF
- ELSE
- * A is xpose
- IF( ILU.EQ.0 ) THEN
- * A**T is upper
- DO J = 1, K - 1
- CALL DLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
- * U at A(0,k+1)
- END DO
- DO J = 0, K - 1
- CALL DLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
- * k by k rect. at A(0,0)
- END DO
- DO J = 0, K - 2
- CALL DLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
- $ S )
- * L at A(0,k)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( 0+( K+1 )*LDA ), LDA+1, SCALE, S )
- * tri U at A(0,k+1)
- CALL DLASSQ( K, A( 0+K*LDA ), LDA+1, SCALE, S )
- * tri L at A(0,k)
- ELSE
- * A**T is lower
- DO J = 1, K - 1
- CALL DLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
- * U at A(0,1)
- END DO
- DO J = K + 1, N
- CALL DLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
- * k by k rect. at A(0,k+1)
- END DO
- DO J = 0, K - 2
- CALL DLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
- * L at A(0,0)
- END DO
- S = S + S
- * double s for the off diagonal elements
- CALL DLASSQ( K, A( LDA ), LDA+1, SCALE, S )
- * tri L at A(0,1)
- CALL DLASSQ( K, A( 0 ), LDA+1, SCALE, S )
- * tri U at A(0,0)
- END IF
- END IF
- END IF
- VALUE = SCALE*SQRT( S )
- END IF
- *
- DLANSF = VALUE
- RETURN
- *
- * End of DLANSF
- *
- END
|