|
- *> \brief \b DLAED7 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAED7 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
- * LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
- * PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
- * $ QSIZ, TLVLS
- * DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
- * $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
- * DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
- * $ QSTORE( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAED7 computes the updated eigensystem of a diagonal
- *> matrix after modification by a rank-one symmetric matrix. This
- *> routine is used only for the eigenproblem which requires all
- *> eigenvalues and optionally eigenvectors of a dense symmetric matrix
- *> that has been reduced to tridiagonal form. DLAED1 handles
- *> the case in which all eigenvalues and eigenvectors of a symmetric
- *> tridiagonal matrix are desired.
- *>
- *> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
- *>
- *> where Z = Q**Tu, u is a vector of length N with ones in the
- *> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
- *>
- *> The eigenvectors of the original matrix are stored in Q, and the
- *> eigenvalues are in D. The algorithm consists of three stages:
- *>
- *> The first stage consists of deflating the size of the problem
- *> when there are multiple eigenvalues or if there is a zero in
- *> the Z vector. For each such occurrence the dimension of the
- *> secular equation problem is reduced by one. This stage is
- *> performed by the routine DLAED8.
- *>
- *> The second stage consists of calculating the updated
- *> eigenvalues. This is done by finding the roots of the secular
- *> equation via the routine DLAED4 (as called by DLAED9).
- *> This routine also calculates the eigenvectors of the current
- *> problem.
- *>
- *> The final stage consists of computing the updated eigenvectors
- *> directly using the updated eigenvalues. The eigenvectors for
- *> the current problem are multiplied with the eigenvectors from
- *> the overall problem.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ICOMPQ
- *> \verbatim
- *> ICOMPQ is INTEGER
- *> = 0: Compute eigenvalues only.
- *> = 1: Compute eigenvectors of original dense symmetric matrix
- *> also. On entry, Q contains the orthogonal matrix used
- *> to reduce the original matrix to tridiagonal form.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] QSIZ
- *> \verbatim
- *> QSIZ is INTEGER
- *> The dimension of the orthogonal matrix used to reduce
- *> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
- *> \endverbatim
- *>
- *> \param[in] TLVLS
- *> \verbatim
- *> TLVLS is INTEGER
- *> The total number of merging levels in the overall divide and
- *> conquer tree.
- *> \endverbatim
- *>
- *> \param[in] CURLVL
- *> \verbatim
- *> CURLVL is INTEGER
- *> The current level in the overall merge routine,
- *> 0 <= CURLVL <= TLVLS.
- *> \endverbatim
- *>
- *> \param[in] CURPBM
- *> \verbatim
- *> CURPBM is INTEGER
- *> The current problem in the current level in the overall
- *> merge routine (counting from upper left to lower right).
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, the eigenvalues of the rank-1-perturbed matrix.
- *> On exit, the eigenvalues of the repaired matrix.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
- *> On entry, the eigenvectors of the rank-1-perturbed matrix.
- *> On exit, the eigenvectors of the repaired tridiagonal matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INDXQ
- *> \verbatim
- *> INDXQ is INTEGER array, dimension (N)
- *> The permutation which will reintegrate the subproblem just
- *> solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
- *> will be in ascending order.
- *> \endverbatim
- *>
- *> \param[in] RHO
- *> \verbatim
- *> RHO is DOUBLE PRECISION
- *> The subdiagonal element used to create the rank-1
- *> modification.
- *> \endverbatim
- *>
- *> \param[in] CUTPNT
- *> \verbatim
- *> CUTPNT is INTEGER
- *> Contains the location of the last eigenvalue in the leading
- *> sub-matrix. min(1,N) <= CUTPNT <= N.
- *> \endverbatim
- *>
- *> \param[in,out] QSTORE
- *> \verbatim
- *> QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
- *> Stores eigenvectors of submatrices encountered during
- *> divide and conquer, packed together. QPTR points to
- *> beginning of the submatrices.
- *> \endverbatim
- *>
- *> \param[in,out] QPTR
- *> \verbatim
- *> QPTR is INTEGER array, dimension (N+2)
- *> List of indices pointing to beginning of submatrices stored
- *> in QSTORE. The submatrices are numbered starting at the
- *> bottom left of the divide and conquer tree, from left to
- *> right and bottom to top.
- *> \endverbatim
- *>
- *> \param[in] PRMPTR
- *> \verbatim
- *> PRMPTR is INTEGER array, dimension (N lg N)
- *> Contains a list of pointers which indicate where in PERM a
- *> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
- *> indicates the size of the permutation and also the size of
- *> the full, non-deflated problem.
- *> \endverbatim
- *>
- *> \param[in] PERM
- *> \verbatim
- *> PERM is INTEGER array, dimension (N lg N)
- *> Contains the permutations (from deflation and sorting) to be
- *> applied to each eigenblock.
- *> \endverbatim
- *>
- *> \param[in] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER array, dimension (N lg N)
- *> Contains a list of pointers which indicate where in GIVCOL a
- *> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
- *> indicates the number of Givens rotations.
- *> \endverbatim
- *>
- *> \param[in] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array, dimension (2, N lg N)
- *> Each pair of numbers indicates a pair of columns to take place
- *> in a Givens rotation.
- *> \endverbatim
- *>
- *> \param[in] GIVNUM
- *> \verbatim
- *> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
- *> Each number indicates the S value to be used in the
- *> corresponding Givens rotation.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (4*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = 1, an eigenvalue did not converge
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
- $ LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
- $ PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
- $ QSIZ, TLVLS
- DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
- $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
- DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
- $ QSTORE( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
- * ..
- * .. Local Scalars ..
- INTEGER COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
- $ IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
- INFO = -3
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -9
- ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
- INFO = -12
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAED7', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * The following values are for bookkeeping purposes only. They are
- * integer pointers which indicate the portion of the workspace
- * used by a particular array in DLAED8 and DLAED9.
- *
- IF( ICOMPQ.EQ.1 ) THEN
- LDQ2 = QSIZ
- ELSE
- LDQ2 = N
- END IF
- *
- IZ = 1
- IDLMDA = IZ + N
- IW = IDLMDA + N
- IQ2 = IW + N
- IS = IQ2 + N*LDQ2
- *
- INDX = 1
- INDXC = INDX + N
- COLTYP = INDXC + N
- INDXP = COLTYP + N
- *
- * Form the z-vector which consists of the last row of Q_1 and the
- * first row of Q_2.
- *
- PTR = 1 + 2**TLVLS
- DO 10 I = 1, CURLVL - 1
- PTR = PTR + 2**( TLVLS-I )
- 10 CONTINUE
- CURR = PTR + CURPBM
- CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
- $ GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
- $ WORK( IZ+N ), INFO )
- *
- * When solving the final problem, we no longer need the stored data,
- * so we will overwrite the data from this level onto the previously
- * used storage space.
- *
- IF( CURLVL.EQ.TLVLS ) THEN
- QPTR( CURR ) = 1
- PRMPTR( CURR ) = 1
- GIVPTR( CURR ) = 1
- END IF
- *
- * Sort and Deflate eigenvalues.
- *
- CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
- $ WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
- $ WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
- $ GIVCOL( 1, GIVPTR( CURR ) ),
- $ GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
- $ IWORK( INDX ), INFO )
- PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
- GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
- *
- * Solve Secular Equation.
- *
- IF( K.NE.0 ) THEN
- CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
- $ WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
- IF( INFO.NE.0 )
- $ GO TO 30
- IF( ICOMPQ.EQ.1 ) THEN
- CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
- $ QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
- END IF
- QPTR( CURR+1 ) = QPTR( CURR ) + K**2
- *
- * Prepare the INDXQ sorting permutation.
- *
- N1 = K
- N2 = N - K
- CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
- ELSE
- QPTR( CURR+1 ) = QPTR( CURR )
- DO 20 I = 1, N
- INDXQ( I ) = I
- 20 CONTINUE
- END IF
- *
- 30 CONTINUE
- RETURN
- *
- * End of DLAED7
- *
- END
|