|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static integer c__1 = 1;
- static doublereal c_b10 = 1.;
- static doublereal c_b11 = 0.;
- static integer c_n1 = -1;
-
- /* > \brief \b DLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification
- by a rank-one symmetric matrix. Used when the original matrix is dense. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLAED7 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q, */
- /* LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR, */
- /* PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK, */
- /* INFO ) */
-
- /* INTEGER CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N, */
- /* $ QSIZ, TLVLS */
- /* DOUBLE PRECISION RHO */
- /* INTEGER GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ), */
- /* $ IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * ) */
- /* DOUBLE PRECISION D( * ), GIVNUM( 2, * ), Q( LDQ, * ), */
- /* $ QSTORE( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLAED7 computes the updated eigensystem of a diagonal */
- /* > matrix after modification by a rank-one symmetric matrix. This */
- /* > routine is used only for the eigenproblem which requires all */
- /* > eigenvalues and optionally eigenvectors of a dense symmetric matrix */
- /* > that has been reduced to tridiagonal form. DLAED1 handles */
- /* > the case in which all eigenvalues and eigenvectors of a symmetric */
- /* > tridiagonal matrix are desired. */
- /* > */
- /* > T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out) */
- /* > */
- /* > where Z = Q**Tu, u is a vector of length N with ones in the */
- /* > CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
- /* > */
- /* > The eigenvectors of the original matrix are stored in Q, and the */
- /* > eigenvalues are in D. The algorithm consists of three stages: */
- /* > */
- /* > The first stage consists of deflating the size of the problem */
- /* > when there are multiple eigenvalues or if there is a zero in */
- /* > the Z vector. For each such occurrence the dimension of the */
- /* > secular equation problem is reduced by one. This stage is */
- /* > performed by the routine DLAED8. */
- /* > */
- /* > The second stage consists of calculating the updated */
- /* > eigenvalues. This is done by finding the roots of the secular */
- /* > equation via the routine DLAED4 (as called by DLAED9). */
- /* > This routine also calculates the eigenvectors of the current */
- /* > problem. */
- /* > */
- /* > The final stage consists of computing the updated eigenvectors */
- /* > directly using the updated eigenvalues. The eigenvectors for */
- /* > the current problem are multiplied with the eigenvectors from */
- /* > the overall problem. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] ICOMPQ */
- /* > \verbatim */
- /* > ICOMPQ is INTEGER */
- /* > = 0: Compute eigenvalues only. */
- /* > = 1: Compute eigenvectors of original dense symmetric matrix */
- /* > also. On entry, Q contains the orthogonal matrix used */
- /* > to reduce the original matrix to tridiagonal form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QSIZ */
- /* > \verbatim */
- /* > QSIZ is INTEGER */
- /* > The dimension of the orthogonal matrix used to reduce */
- /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TLVLS */
- /* > \verbatim */
- /* > TLVLS is INTEGER */
- /* > The total number of merging levels in the overall divide and */
- /* > conquer tree. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CURLVL */
- /* > \verbatim */
- /* > CURLVL is INTEGER */
- /* > The current level in the overall merge routine, */
- /* > 0 <= CURLVL <= TLVLS. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CURPBM */
- /* > \verbatim */
- /* > CURPBM is INTEGER */
- /* > The current problem in the current level in the overall */
- /* > merge routine (counting from upper left to lower right). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the eigenvalues of the rank-1-perturbed matrix. */
- /* > On exit, the eigenvalues of the repaired matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
- /* > On entry, the eigenvectors of the rank-1-perturbed matrix. */
- /* > On exit, the eigenvectors of the repaired tridiagonal matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INDXQ */
- /* > \verbatim */
- /* > INDXQ is INTEGER array, dimension (N) */
- /* > The permutation which will reintegrate the subproblem just */
- /* > solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */
- /* > will be in ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RHO */
- /* > \verbatim */
- /* > RHO is DOUBLE PRECISION */
- /* > The subdiagonal element used to create the rank-1 */
- /* > modification. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] CUTPNT */
- /* > \verbatim */
- /* > CUTPNT is INTEGER */
- /* > Contains the location of the last eigenvalue in the leading */
- /* > sub-matrix. f2cmin(1,N) <= CUTPNT <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] QSTORE */
- /* > \verbatim */
- /* > QSTORE is DOUBLE PRECISION array, dimension (N**2+1) */
- /* > Stores eigenvectors of submatrices encountered during */
- /* > divide and conquer, packed together. QPTR points to */
- /* > beginning of the submatrices. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] QPTR */
- /* > \verbatim */
- /* > QPTR is INTEGER array, dimension (N+2) */
- /* > List of indices pointing to beginning of submatrices stored */
- /* > in QSTORE. The submatrices are numbered starting at the */
- /* > bottom left of the divide and conquer tree, from left to */
- /* > right and bottom to top. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PRMPTR */
- /* > \verbatim */
- /* > PRMPTR is INTEGER array, dimension (N lg N) */
- /* > Contains a list of pointers which indicate where in PERM a */
- /* > level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */
- /* > indicates the size of the permutation and also the size of */
- /* > the full, non-deflated problem. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PERM */
- /* > \verbatim */
- /* > PERM is INTEGER array, dimension (N lg N) */
- /* > Contains the permutations (from deflation and sorting) to be */
- /* > applied to each eigenblock. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVPTR */
- /* > \verbatim */
- /* > GIVPTR is INTEGER array, dimension (N lg N) */
- /* > Contains a list of pointers which indicate where in GIVCOL a */
- /* > level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */
- /* > indicates the number of Givens rotations. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVCOL */
- /* > \verbatim */
- /* > GIVCOL is INTEGER array, dimension (2, N lg N) */
- /* > Each pair of numbers indicates a pair of columns to take place */
- /* > in a Givens rotation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GIVNUM */
- /* > \verbatim */
- /* > GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N) */
- /* > Each number indicates the S value to be used in the */
- /* > corresponding Givens rotation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (4*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: if INFO = 1, an eigenvalue did not converge */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Jeff Rutter, Computer Science Division, University of California */
- /* > at Berkeley, USA */
-
- /* ===================================================================== */
- /* Subroutine */ void dlaed7_(integer *icompq, integer *n, integer *qsiz,
- integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__,
- doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer
- *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer *
- perm, integer *givptr, integer *givcol, doublereal *givnum,
- doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
-
- /* Local variables */
- integer indx, curr, i__, k;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer indxc, indxp, n1, n2;
- extern /* Subroutine */ void dlaed8_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *,
- doublereal *, integer *, integer *, integer *), dlaed9_(integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), dlaeda_(integer *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, doublereal *, integer *, doublereal *, doublereal *, integer *)
- ;
- integer idlmda, is, iw, iz;
- extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- integer coltyp, iq2, ptr, ldq2;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --indxq;
- --qstore;
- --qptr;
- --prmptr;
- --perm;
- --givptr;
- givcol -= 3;
- givnum -= 3;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*icompq == 1 && *qsiz < *n) {
- *info = -3;
- } else if (*ldq < f2cmax(1,*n)) {
- *info = -9;
- } else if (f2cmin(1,*n) > *cutpnt || *n < *cutpnt) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLAED7", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- /* The following values are for bookkeeping purposes only. They are */
- /* integer pointers which indicate the portion of the workspace */
- /* used by a particular array in DLAED8 and DLAED9. */
-
- if (*icompq == 1) {
- ldq2 = *qsiz;
- } else {
- ldq2 = *n;
- }
-
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq2 = iw + *n;
- is = iq2 + *n * ldq2;
-
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
-
- /* Form the z-vector which consists of the last row of Q_1 and the */
- /* first row of Q_2. */
-
- ptr = pow_ii(c__2, *tlvls) + 1;
- i__1 = *curlvl - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *tlvls - i__;
- ptr += pow_ii(c__2, i__2);
- /* L10: */
- }
- curr = ptr + *curpbm;
- dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
- givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz
- + *n], info);
-
- /* When solving the final problem, we no longer need the stored data, */
- /* so we will overwrite the data from this level onto the previously */
- /* used storage space. */
-
- if (*curlvl == *tlvls) {
- qptr[curr] = 1;
- prmptr[curr] = 1;
- givptr[curr] = 1;
- }
-
- /* Sort and Deflate eigenvalues. */
-
- dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho,
- cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
- perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1)
- + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[
- indx], info);
- prmptr[curr + 1] = prmptr[curr] + *n;
- givptr[curr + 1] += givptr[curr];
-
- /* Solve Secular Equation. */
-
- if (k != 0) {
- dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda],
- &work[iw], &qstore[qptr[curr]], &k, info);
- if (*info != 0) {
- goto L30;
- }
- if (*icompq == 1) {
- dgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[
- qptr[curr]], &k, &c_b11, &q[q_offset], ldq);
- }
- /* Computing 2nd power */
- i__1 = k;
- qptr[curr + 1] = qptr[curr] + i__1 * i__1;
-
- /* Prepare the INDXQ sorting permutation. */
-
- n1 = k;
- n2 = *n - k;
- dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- qptr[curr + 1] = qptr[curr];
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
- /* L20: */
- }
- }
-
- L30:
- return;
-
- /* End of DLAED7 */
-
- } /* dlaed7_ */
|