|
- *> \brief \b DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAED5 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
- *
- * .. Scalar Arguments ..
- * INTEGER I
- * DOUBLE PRECISION DLAM, RHO
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> This subroutine computes the I-th eigenvalue of a symmetric rank-one
- *> modification of a 2-by-2 diagonal matrix
- *>
- *> diag( D ) + RHO * Z * transpose(Z) .
- *>
- *> The diagonal elements in the array D are assumed to satisfy
- *>
- *> D(i) < D(j) for i < j .
- *>
- *> We also assume RHO > 0 and that the Euclidean norm of the vector
- *> Z is one.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] I
- *> \verbatim
- *> I is INTEGER
- *> The index of the eigenvalue to be computed. I = 1 or I = 2.
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (2)
- *> The original eigenvalues. We assume D(1) < D(2).
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (2)
- *> The components of the updating vector.
- *> \endverbatim
- *>
- *> \param[out] DELTA
- *> \verbatim
- *> DELTA is DOUBLE PRECISION array, dimension (2)
- *> The vector DELTA contains the information necessary
- *> to construct the eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] RHO
- *> \verbatim
- *> RHO is DOUBLE PRECISION
- *> The scalar in the symmetric updating formula.
- *> \endverbatim
- *>
- *> \param[out] DLAM
- *> \verbatim
- *> DLAM is DOUBLE PRECISION
- *> The computed lambda_I, the I-th updated eigenvalue.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ren-Cang Li, Computer Science Division, University of California
- *> at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER I
- DOUBLE PRECISION DLAM, RHO
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE, TWO, FOUR
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
- $ FOUR = 4.0D0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION B, C, DEL, TAU, TEMP, W
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, SQRT
- * ..
- * .. Executable Statements ..
- *
- DEL = D( 2 ) - D( 1 )
- IF( I.EQ.1 ) THEN
- W = ONE + TWO*RHO*( Z( 2 )*Z( 2 )-Z( 1 )*Z( 1 ) ) / DEL
- IF( W.GT.ZERO ) THEN
- B = DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 1 )*Z( 1 )*DEL
- *
- * B > ZERO, always
- *
- TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
- DLAM = D( 1 ) + TAU
- DELTA( 1 ) = -Z( 1 ) / TAU
- DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
- ELSE
- B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 2 )*Z( 2 )*DEL
- IF( B.GT.ZERO ) THEN
- TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
- ELSE
- TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
- END IF
- DLAM = D( 2 ) + TAU
- DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- DELTA( 2 ) = -Z( 2 ) / TAU
- END IF
- TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- DELTA( 1 ) = DELTA( 1 ) / TEMP
- DELTA( 2 ) = DELTA( 2 ) / TEMP
- ELSE
- *
- * Now I=2
- *
- B = -DEL + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
- C = RHO*Z( 2 )*Z( 2 )*DEL
- IF( B.GT.ZERO ) THEN
- TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
- ELSE
- TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
- END IF
- DLAM = D( 2 ) + TAU
- DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
- DELTA( 2 ) = -Z( 2 ) / TAU
- TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
- DELTA( 1 ) = DELTA( 1 ) / TEMP
- DELTA( 2 ) = DELTA( 2 ) / TEMP
- END IF
- RETURN
- *
- * End of DLAED5
- *
- END
|