|
- *> \brief \b DLAED1 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAED1 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER CUTPNT, INFO, LDQ, N
- * DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- * INTEGER INDXQ( * ), IWORK( * )
- * DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAED1 computes the updated eigensystem of a diagonal
- *> matrix after modification by a rank-one symmetric matrix. This
- *> routine is used only for the eigenproblem which requires all
- *> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
- *> the case in which eigenvalues only or eigenvalues and eigenvectors
- *> of a full symmetric matrix (which was reduced to tridiagonal form)
- *> are desired.
- *>
- *> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
- *>
- *> where Z = Q**T*u, u is a vector of length N with ones in the
- *> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
- *>
- *> The eigenvectors of the original matrix are stored in Q, and the
- *> eigenvalues are in D. The algorithm consists of three stages:
- *>
- *> The first stage consists of deflating the size of the problem
- *> when there are multiple eigenvalues or if there is a zero in
- *> the Z vector. For each such occurrence the dimension of the
- *> secular equation problem is reduced by one. This stage is
- *> performed by the routine DLAED2.
- *>
- *> The second stage consists of calculating the updated
- *> eigenvalues. This is done by finding the roots of the secular
- *> equation via the routine DLAED4 (as called by DLAED3).
- *> This routine also calculates the eigenvectors of the current
- *> problem.
- *>
- *> The final stage consists of computing the updated eigenvectors
- *> directly using the updated eigenvalues. The eigenvectors for
- *> the current problem are multiplied with the eigenvectors from
- *> the overall problem.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, the eigenvalues of the rank-1-perturbed matrix.
- *> On exit, the eigenvalues of the repaired matrix.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
- *> On entry, the eigenvectors of the rank-1-perturbed matrix.
- *> On exit, the eigenvectors of the repaired tridiagonal matrix.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] INDXQ
- *> \verbatim
- *> INDXQ is INTEGER array, dimension (N)
- *> On entry, the permutation which separately sorts the two
- *> subproblems in D into ascending order.
- *> On exit, the permutation which will reintegrate the
- *> subproblems back into sorted order,
- *> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
- *> \endverbatim
- *>
- *> \param[in] RHO
- *> \verbatim
- *> RHO is DOUBLE PRECISION
- *> The subdiagonal entry used to create the rank-1 modification.
- *> \endverbatim
- *>
- *> \param[in] CUTPNT
- *> \verbatim
- *> CUTPNT is INTEGER
- *> The location of the last eigenvalue in the leading sub-matrix.
- *> min(1,N) <= CUTPNT <= N/2.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (4*N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> > 0: if INFO = 1, an eigenvalue did not converge
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA \n
- *> Modified by Francoise Tisseur, University of Tennessee
- *>
- * =====================================================================
- SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER CUTPNT, INFO, LDQ, N
- DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- INTEGER INDXQ( * ), IWORK( * )
- DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
- $ IW, IZ, K, N1, N2, ZPP1
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAED1', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * The following values are integer pointers which indicate
- * the portion of the workspace
- * used by a particular array in DLAED2 and DLAED3.
- *
- IZ = 1
- IDLMDA = IZ + N
- IW = IDLMDA + N
- IQ2 = IW + N
- *
- INDX = 1
- INDXC = INDX + N
- COLTYP = INDXC + N
- INDXP = COLTYP + N
- *
- *
- * Form the z-vector which consists of the last row of Q_1 and the
- * first row of Q_2.
- *
- CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
- ZPP1 = CUTPNT + 1
- CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
- *
- * Deflate eigenvalues.
- *
- CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
- $ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
- $ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
- $ IWORK( COLTYP ), INFO )
- *
- IF( INFO.NE.0 )
- $ GO TO 20
- *
- * Solve Secular Equation.
- *
- IF( K.NE.0 ) THEN
- IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
- $ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
- CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
- $ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
- $ WORK( IW ), WORK( IS ), INFO )
- IF( INFO.NE.0 )
- $ GO TO 20
- *
- * Prepare the INDXQ sorting permutation.
- *
- N1 = K
- N2 = N - K
- CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
- ELSE
- DO 10 I = 1, N
- INDXQ( I ) = I
- 10 CONTINUE
- END IF
- *
- 20 CONTINUE
- RETURN
- *
- * End of DLAED1
- *
- END
|