|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b9 = -1.;
- static doublereal c_b11 = 1.;
-
- /* > \brief \b DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetri
- c or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provide
- s error bounds and backward error estimates fo */
- /* r the solution. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLA_PORFSX_EXTENDED + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_por
- fsx_extended.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_por
- fsx_extended.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_por
- fsx_extended.f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N, NRHS, A, LDA, */
- /* AF, LDAF, COLEQU, C, B, LDB, Y, */
- /* LDY, BERR_OUT, N_NORMS, */
- /* ERR_BNDS_NORM, ERR_BNDS_COMP, RES, */
- /* AYB, DY, Y_TAIL, RCOND, ITHRESH, */
- /* RTHRESH, DZ_UB, IGNORE_CWISE, */
- /* INFO ) */
-
- /* INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE, */
- /* $ N_NORMS, ITHRESH */
- /* CHARACTER UPLO */
- /* LOGICAL COLEQU, IGNORE_CWISE */
- /* DOUBLE PRECISION RTHRESH, DZ_UB */
- /* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
- /* $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * ) */
- /* DOUBLE PRECISION C( * ), AYB(*), RCOND, BERR_OUT( * ), */
- /* $ ERR_BNDS_NORM( NRHS, * ), */
- /* $ ERR_BNDS_COMP( NRHS, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLA_PORFSX_EXTENDED improves the computed solution to a system of */
- /* > linear equations by performing extra-precise iterative refinement */
- /* > and provides error bounds and backward error estimates for the solution. */
- /* > This subroutine is called by DPORFSX to perform iterative refinement. */
- /* > In addition to normwise error bound, the code provides maximum */
- /* > componentwise error bound if possible. See comments for ERR_BNDS_NORM */
- /* > and ERR_BNDS_COMP for details of the error bounds. Note that this */
- /* > subroutine is only resonsible for setting the second fields of */
- /* > ERR_BNDS_NORM and ERR_BNDS_COMP. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] PREC_TYPE */
- /* > \verbatim */
- /* > PREC_TYPE is INTEGER */
- /* > Specifies the intermediate precision to be used in refinement. */
- /* > The value is defined by ILAPREC(P) where P is a CHARACTER and P */
- /* > = 'S': Single */
- /* > = 'D': Double */
- /* > = 'I': Indigenous */
- /* > = 'X' or 'E': Extra */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of linear equations, i.e., the order of the */
- /* > matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right-hand-sides, i.e., the number of columns of the */
- /* > matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the N-by-N matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AF */
- /* > \verbatim */
- /* > AF is DOUBLE PRECISION array, dimension (LDAF,N) */
- /* > The triangular factor U or L from the Cholesky factorization */
- /* > A = U**T*U or A = L*L**T, as computed by DPOTRF. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDAF */
- /* > \verbatim */
- /* > LDAF is INTEGER */
- /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COLEQU */
- /* > \verbatim */
- /* > COLEQU is LOGICAL */
- /* > If .TRUE. then column equilibration was done to A before calling */
- /* > this routine. This is needed to compute the solution and error */
- /* > bounds correctly. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] C */
- /* > \verbatim */
- /* > C is DOUBLE PRECISION array, dimension (N) */
- /* > The column scale factors for A. If COLEQU = .FALSE., C */
- /* > is not accessed. If C is input, each element of C should be a power */
- /* > of the radix to ensure a reliable solution and error estimates. */
- /* > Scaling by powers of the radix does not cause rounding errors unless */
- /* > the result underflows or overflows. Rounding errors during scaling */
- /* > lead to refining with a matrix that is not equivalent to the */
- /* > input matrix, producing error estimates that may not be */
- /* > reliable. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* > The right-hand-side matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Y */
- /* > \verbatim */
- /* > Y is DOUBLE PRECISION array, dimension (LDY,NRHS) */
- /* > On entry, the solution matrix X, as computed by DPOTRS. */
- /* > On exit, the improved solution matrix Y. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDY */
- /* > \verbatim */
- /* > LDY is INTEGER */
- /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BERR_OUT */
- /* > \verbatim */
- /* > BERR_OUT is DOUBLE PRECISION array, dimension (NRHS) */
- /* > On exit, BERR_OUT(j) contains the componentwise relative backward */
- /* > error for right-hand-side j from the formula */
- /* > f2cmax(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
- /* > where abs(Z) is the componentwise absolute value of the matrix */
- /* > or vector Z. This is computed by DLA_LIN_BERR. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N_NORMS */
- /* > \verbatim */
- /* > N_NORMS is INTEGER */
- /* > Determines which error bounds to return (see ERR_BNDS_NORM */
- /* > and ERR_BNDS_COMP). */
- /* > If N_NORMS >= 1 return normwise error bounds. */
- /* > If N_NORMS >= 2 return componentwise error bounds. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ERR_BNDS_NORM */
- /* > \verbatim */
- /* > ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
- /* > For each right-hand side, this array contains information about */
- /* > various error bounds and condition numbers corresponding to the */
- /* > normwise relative error, which is defined as follows: */
- /* > */
- /* > Normwise relative error in the ith solution vector: */
- /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
- /* > ------------------------------ */
- /* > max_j abs(X(j,i)) */
- /* > */
- /* > The array is indexed by the type of error information as described */
- /* > below. There currently are up to three pieces of information */
- /* > returned. */
- /* > */
- /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
- /* > right-hand side. */
- /* > */
- /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
- /* > three fields: */
- /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* > reciprocal condition number is less than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). */
- /* > */
- /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* > almost certainly within a factor of 10 of the true error */
- /* > so long as the next entry is greater than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* > be trusted if the previous boolean is true. */
- /* > */
- /* > err = 3 Reciprocal condition number: Estimated normwise */
- /* > reciprocal condition number. Compared with the threshold */
- /* > sqrt(n) * slamch('Epsilon') to determine if the error */
- /* > estimate is "guaranteed". These reciprocal condition */
- /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* > appropriately scaled matrix Z. */
- /* > Let Z = S*A, where S scales each row by a power of the */
- /* > radix so all absolute row sums of Z are approximately 1. */
- /* > */
- /* > This subroutine is only responsible for setting the second field */
- /* > above. */
- /* > See Lapack Working Note 165 for further details and extra */
- /* > cautions. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] ERR_BNDS_COMP */
- /* > \verbatim */
- /* > ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
- /* > For each right-hand side, this array contains information about */
- /* > various error bounds and condition numbers corresponding to the */
- /* > componentwise relative error, which is defined as follows: */
- /* > */
- /* > Componentwise relative error in the ith solution vector: */
- /* > abs(XTRUE(j,i) - X(j,i)) */
- /* > max_j ---------------------- */
- /* > abs(X(j,i)) */
- /* > */
- /* > The array is indexed by the right-hand side i (on which the */
- /* > componentwise relative error depends), and the type of error */
- /* > information as described below. There currently are up to three */
- /* > pieces of information returned for each right-hand side. If */
- /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
- /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
- /* > the first (:,N_ERR_BNDS) entries are returned. */
- /* > */
- /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
- /* > right-hand side. */
- /* > */
- /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
- /* > three fields: */
- /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
- /* > reciprocal condition number is less than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). */
- /* > */
- /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
- /* > almost certainly within a factor of 10 of the true error */
- /* > so long as the next entry is greater than the threshold */
- /* > sqrt(n) * slamch('Epsilon'). This error bound should only */
- /* > be trusted if the previous boolean is true. */
- /* > */
- /* > err = 3 Reciprocal condition number: Estimated componentwise */
- /* > reciprocal condition number. Compared with the threshold */
- /* > sqrt(n) * slamch('Epsilon') to determine if the error */
- /* > estimate is "guaranteed". These reciprocal condition */
- /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
- /* > appropriately scaled matrix Z. */
- /* > Let Z = S*(A*diag(x)), where x is the solution for the */
- /* > current right-hand side and S scales each row of */
- /* > A*diag(x) by a power of the radix so all absolute row */
- /* > sums of Z are approximately 1. */
- /* > */
- /* > This subroutine is only responsible for setting the second field */
- /* > above. */
- /* > See Lapack Working Note 165 for further details and extra */
- /* > cautions. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RES */
- /* > \verbatim */
- /* > RES is DOUBLE PRECISION array, dimension (N) */
- /* > Workspace to hold the intermediate residual. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] AYB */
- /* > \verbatim */
- /* > AYB is DOUBLE PRECISION array, dimension (N) */
- /* > Workspace. This can be the same workspace passed for Y_TAIL. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DY */
- /* > \verbatim */
- /* > DY is DOUBLE PRECISION array, dimension (N) */
- /* > Workspace to hold the intermediate solution. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Y_TAIL */
- /* > \verbatim */
- /* > Y_TAIL is DOUBLE PRECISION array, dimension (N) */
- /* > Workspace to hold the trailing bits of the intermediate solution. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RCOND */
- /* > \verbatim */
- /* > RCOND is DOUBLE PRECISION */
- /* > Reciprocal scaled condition number. This is an estimate of the */
- /* > reciprocal Skeel condition number of the matrix A after */
- /* > equilibration (if done). If this is less than the machine */
- /* > precision (in particular, if it is zero), the matrix is singular */
- /* > to working precision. Note that the error may still be small even */
- /* > if this number is very small and the matrix appears ill- */
- /* > conditioned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ITHRESH */
- /* > \verbatim */
- /* > ITHRESH is INTEGER */
- /* > The maximum number of residual computations allowed for */
- /* > refinement. The default is 10. For 'aggressive' set to 100 to */
- /* > permit convergence using approximate factorizations or */
- /* > factorizations other than LU. If the factorization uses a */
- /* > technique other than Gaussian elimination, the guarantees in */
- /* > ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RTHRESH */
- /* > \verbatim */
- /* > RTHRESH is DOUBLE PRECISION */
- /* > Determines when to stop refinement if the error estimate stops */
- /* > decreasing. Refinement will stop when the next solution no longer */
- /* > satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is */
- /* > the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The */
- /* > default value is 0.5. For 'aggressive' set to 0.9 to permit */
- /* > convergence on extremely ill-conditioned matrices. See LAWN 165 */
- /* > for more details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DZ_UB */
- /* > \verbatim */
- /* > DZ_UB is DOUBLE PRECISION */
- /* > Determines when to start considering componentwise convergence. */
- /* > Componentwise convergence is only considered after each component */
- /* > of the solution Y is stable, which we definte as the relative */
- /* > change in each component being less than DZ_UB. The default value */
- /* > is 0.25, requiring the first bit to be stable. See LAWN 165 for */
- /* > more details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IGNORE_CWISE */
- /* > \verbatim */
- /* > IGNORE_CWISE is LOGICAL */
- /* > If .TRUE. then ignore componentwise convergence. Default value */
- /* > is .FALSE.. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: Successful exit. */
- /* > < 0: if INFO = -i, the ith argument to DPOTRS had an illegal */
- /* > value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup doublePOcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void dla_porfsx_extended_(integer *prec_type__, char *uplo,
- integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *
- af, integer *ldaf, logical *colequ, doublereal *c__, doublereal *b,
- integer *ldb, doublereal *y, integer *ldy, doublereal *berr_out__,
- integer *n_norms__, doublereal *err_bnds_norm__, doublereal *
- err_bnds_comp__, doublereal *res, doublereal *ayb, doublereal *dy,
- doublereal *y_tail__, doublereal *rcond, integer *ithresh, doublereal
- *rthresh, doublereal *dz_ub__, logical *ignore_cwise__, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, y_dim1,
- y_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
- err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2, i__3;
- doublereal d__1, d__2;
-
- /* Local variables */
- doublereal dx_x__, dz_z__;
- extern /* Subroutine */ void dla_lin_berr_(integer *, integer *, integer *
- , doublereal *, doublereal *, doublereal *);
- doublereal ymin, dxratmax, dzratmax;
- integer y_prec_state__;
- extern /* Subroutine */ void blas_dsymv_x_(integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *);
- integer uplo2, i__, j;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void blas_dsymv2_x_(integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dcopy_(integer *, doublereal *, integer *, doublereal *, integer *
- );
- doublereal dxrat;
- logical incr_prec__;
- doublereal dzrat;
- extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), dla_syamv_(integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), dsymv_(char *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- doublereal normx, normy, myhugeval, prev_dz_z__;
- extern doublereal dlamch_(char *);
- doublereal yk, final_dx_x__;
- extern /* Subroutine */ void dla_wwaddw_(integer *, doublereal *,
- doublereal *, doublereal *);
- doublereal final_dz_z__, normdx;
- extern /* Subroutine */ void dpotrs_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- doublereal prevnormdx;
- integer cnt;
- doublereal dyk, eps;
- extern integer ilauplo_(char *);
- integer x_state__, z_state__;
- doublereal incr_thresh__;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- err_bnds_comp_dim1 = *nrhs;
- err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
- err_bnds_comp__ -= err_bnds_comp_offset;
- err_bnds_norm_dim1 = *nrhs;
- err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
- err_bnds_norm__ -= err_bnds_norm_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1 * 1;
- af -= af_offset;
- --c__;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
- --berr_out__;
- --res;
- --ayb;
- --dy;
- --y_tail__;
-
- /* Function Body */
- if (*info != 0) {
- return;
- }
- eps = dlamch_("Epsilon");
- myhugeval = dlamch_("Overflow");
- /* Force MYHUGEVAL to Inf */
- myhugeval *= myhugeval;
- /* Using MYHUGEVAL may lead to spurious underflows. */
- incr_thresh__ = (doublereal) (*n) * eps;
- if (lsame_(uplo, "L")) {
- uplo2 = ilauplo_("L");
- } else {
- uplo2 = ilauplo_("U");
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- y_prec_state__ = 1;
- if (y_prec_state__ == 2) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- y_tail__[i__] = 0.;
- }
- }
- dxrat = 0.;
- dxratmax = 0.;
- dzrat = 0.;
- dzratmax = 0.;
- final_dx_x__ = myhugeval;
- final_dz_z__ = myhugeval;
- prevnormdx = myhugeval;
- prev_dz_z__ = myhugeval;
- dz_z__ = myhugeval;
- dx_x__ = myhugeval;
- x_state__ = 1;
- z_state__ = 0;
- incr_prec__ = FALSE_;
- i__2 = *ithresh;
- for (cnt = 1; cnt <= i__2; ++cnt) {
-
- /* Compute residual RES = B_s - op(A_s) * Y, */
- /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
-
- dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
- if (y_prec_state__ == 0) {
- dsymv_(uplo, n, &c_b9, &a[a_offset], lda, &y[j * y_dim1 + 1],
- &c__1, &c_b11, &res[1], &c__1);
- } else if (y_prec_state__ == 1) {
- blas_dsymv_x__(&uplo2, n, &c_b9, &a[a_offset], lda, &y[j *
- y_dim1 + 1], &c__1, &c_b11, &res[1], &c__1,
- prec_type__);
- } else {
- blas_dsymv2_x__(&uplo2, n, &c_b9, &a[a_offset], lda, &y[j *
- y_dim1 + 1], &y_tail__[1], &c__1, &c_b11, &res[1], &
- c__1, prec_type__);
- }
- /* XXX: RES is no longer needed. */
- dcopy_(n, &res[1], &c__1, &dy[1], &c__1);
- dpotrs_(uplo, n, &c__1, &af[af_offset], ldaf, &dy[1], n, info);
-
- /* Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT. */
-
- normx = 0.;
- normy = 0.;
- normdx = 0.;
- dz_z__ = 0.;
- ymin = myhugeval;
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- yk = (d__1 = y[i__ + j * y_dim1], abs(d__1));
- dyk = (d__1 = dy[i__], abs(d__1));
- if (yk != 0.) {
- /* Computing MAX */
- d__1 = dz_z__, d__2 = dyk / yk;
- dz_z__ = f2cmax(d__1,d__2);
- } else if (dyk != 0.) {
- dz_z__ = myhugeval;
- }
- ymin = f2cmin(ymin,yk);
- normy = f2cmax(normy,yk);
- if (*colequ) {
- /* Computing MAX */
- d__1 = normx, d__2 = yk * c__[i__];
- normx = f2cmax(d__1,d__2);
- /* Computing MAX */
- d__1 = normdx, d__2 = dyk * c__[i__];
- normdx = f2cmax(d__1,d__2);
- } else {
- normx = normy;
- normdx = f2cmax(normdx,dyk);
- }
- }
- if (normx != 0.) {
- dx_x__ = normdx / normx;
- } else if (normdx == 0.) {
- dx_x__ = 0.;
- } else {
- dx_x__ = myhugeval;
- }
- dxrat = normdx / prevnormdx;
- dzrat = dz_z__ / prev_dz_z__;
-
- /* Check termination criteria. */
-
- if (ymin * *rcond < incr_thresh__ * normy && y_prec_state__ < 2) {
- incr_prec__ = TRUE_;
- }
- if (x_state__ == 3 && dxrat <= *rthresh) {
- x_state__ = 1;
- }
- if (x_state__ == 1) {
- if (dx_x__ <= eps) {
- x_state__ = 2;
- } else if (dxrat > *rthresh) {
- if (y_prec_state__ != 2) {
- incr_prec__ = TRUE_;
- } else {
- x_state__ = 3;
- }
- } else {
- if (dxrat > dxratmax) {
- dxratmax = dxrat;
- }
- }
- if (x_state__ > 1) {
- final_dx_x__ = dx_x__;
- }
- }
- if (z_state__ == 0 && dz_z__ <= *dz_ub__) {
- z_state__ = 1;
- }
- if (z_state__ == 3 && dzrat <= *rthresh) {
- z_state__ = 1;
- }
- if (z_state__ == 1) {
- if (dz_z__ <= eps) {
- z_state__ = 2;
- } else if (dz_z__ > *dz_ub__) {
- z_state__ = 0;
- dzratmax = 0.;
- final_dz_z__ = myhugeval;
- } else if (dzrat > *rthresh) {
- if (y_prec_state__ != 2) {
- incr_prec__ = TRUE_;
- } else {
- z_state__ = 3;
- }
- } else {
- if (dzrat > dzratmax) {
- dzratmax = dzrat;
- }
- }
- if (z_state__ > 1) {
- final_dz_z__ = dz_z__;
- }
- }
- if (x_state__ != 1 && (*ignore_cwise__ || z_state__ != 1)) {
- goto L666;
- }
- if (incr_prec__) {
- incr_prec__ = FALSE_;
- ++y_prec_state__;
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- y_tail__[i__] = 0.;
- }
- }
- prevnormdx = normdx;
- prev_dz_z__ = dz_z__;
-
- /* Update soluton. */
-
- if (y_prec_state__ < 2) {
- daxpy_(n, &c_b11, &dy[1], &c__1, &y[j * y_dim1 + 1], &c__1);
- } else {
- dla_wwaddw_(n, &y[j * y_dim1 + 1], &y_tail__[1], &dy[1]);
- }
- }
- /* Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't CALL MYEXIT. */
- L666:
-
- /* Set final_* when cnt hits ithresh. */
-
- if (x_state__ == 1) {
- final_dx_x__ = dx_x__;
- }
- if (z_state__ == 1) {
- final_dz_z__ = dz_z__;
- }
-
- /* Compute error bounds. */
-
- if (*n_norms__ >= 1) {
- err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = final_dx_x__ / (
- 1 - dxratmax);
- }
- if (*n_norms__ >= 2) {
- err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = final_dz_z__ / (
- 1 - dzratmax);
- }
-
- /* Compute componentwise relative backward error from formula */
- /* f2cmax(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) */
- /* where abs(Z) is the componentwise absolute value of the matrix */
- /* or vector Z. */
-
- /* Compute residual RES = B_s - op(A_s) * Y, */
- /* op(A) = A, A**T, or A**H depending on TRANS (and type). */
-
- dcopy_(n, &b[j * b_dim1 + 1], &c__1, &res[1], &c__1);
- dsymv_(uplo, n, &c_b9, &a[a_offset], lda, &y[j * y_dim1 + 1], &c__1, &
- c_b11, &res[1], &c__1);
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ayb[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
- }
-
- /* Compute abs(op(A_s))*abs(Y) + abs(B_s). */
-
- dla_syamv_(&uplo2, n, &c_b11, &a[a_offset], lda, &y[j * y_dim1 + 1],
- &c__1, &c_b11, &ayb[1], &c__1);
- dla_lin_berr_(n, n, &c__1, &res[1], &ayb[1], &berr_out__[j]);
-
- /* End of loop for each RHS. */
-
- }
-
- return;
- } /* dla_porfsx_extended__ */
|