|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static doublereal c_b14 = 0.;
- static doublereal c_b24 = 1.;
-
- /* > \brief \b DGGSVP3 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DGGSVP3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp3
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp3
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp3
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
- /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
- /* IWORK, TAU, WORK, LWORK, INFO ) */
-
- /* CHARACTER JOBQ, JOBU, JOBV */
- /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK */
- /* DOUBLE PRECISION TOLA, TOLB */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
- /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DGGSVP3 computes orthogonal matrices U, V and Q such that */
- /* > */
- /* > N-K-L K L */
- /* > U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
- /* > L ( 0 0 A23 ) */
- /* > M-K-L ( 0 0 0 ) */
- /* > */
- /* > N-K-L K L */
- /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
- /* > M-K ( 0 0 A23 ) */
- /* > */
- /* > N-K-L K L */
- /* > V**T*B*Q = L ( 0 0 B13 ) */
- /* > P-L ( 0 0 0 ) */
- /* > */
- /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
- /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
- /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
- /* > numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. */
- /* > */
- /* > This decomposition is the preprocessing step for computing the */
- /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
- /* > DGGSVD3. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBU */
- /* > \verbatim */
- /* > JOBU is CHARACTER*1 */
- /* > = 'U': Orthogonal matrix U is computed; */
- /* > = 'N': U is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBV */
- /* > \verbatim */
- /* > JOBV is CHARACTER*1 */
- /* > = 'V': Orthogonal matrix V is computed; */
- /* > = 'N': V is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBQ */
- /* > \verbatim */
- /* > JOBQ is CHARACTER*1 */
- /* > = 'Q': Orthogonal matrix Q is computed; */
- /* > = 'N': Q is not computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is INTEGER */
- /* > The number of rows of the matrix B. P >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrices A and B. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, A contains the triangular (or trapezoidal) matrix */
- /* > described in the Purpose section. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
- /* > On entry, the P-by-N matrix B. */
- /* > On exit, B contains the triangular matrix described in */
- /* > the Purpose section. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TOLA */
- /* > \verbatim */
- /* > TOLA is DOUBLE PRECISION */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TOLB */
- /* > \verbatim */
- /* > TOLB is DOUBLE PRECISION */
- /* > */
- /* > TOLA and TOLB are the thresholds to determine the effective */
- /* > numerical rank of matrix B and a subblock of A. Generally, */
- /* > they are set to */
- /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
- /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
- /* > The size of TOLA and TOLB may affect the size of backward */
- /* > errors of the decomposition. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[out] L */
- /* > \verbatim */
- /* > L is INTEGER */
- /* > */
- /* > On exit, K and L specify the dimension of the subblocks */
- /* > described in Purpose section. */
- /* > K + L = effective numerical rank of (A**T,B**T)**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is DOUBLE PRECISION array, dimension (LDU,M) */
- /* > If JOBU = 'U', U contains the orthogonal matrix U. */
- /* > If JOBU = 'N', U is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
- /* > JOBU = 'U'; LDU >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is DOUBLE PRECISION array, dimension (LDV,P) */
- /* > If JOBV = 'V', V contains the orthogonal matrix V. */
- /* > If JOBV = 'N', V is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
- /* > JOBV = 'V'; LDV >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
- /* > If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
- /* > If JOBQ = 'N', Q is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
- /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAU */
- /* > \verbatim */
- /* > TAU is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date August 2015 */
-
- /* > \ingroup doubleOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization */
- /* > with column pivoting to detect the effective numerical rank of the */
- /* > a matrix. It may be replaced by a better rank determination strategy. */
- /* > */
- /* > DGGSVP3 replaces the deprecated subroutine DGGSVP. */
- /* > */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dggsvp3_(char *jobu, char *jobv, char *jobq, integer *m,
- integer *p, integer *n, doublereal *a, integer *lda, doublereal *b,
- integer *ldb, doublereal *tola, doublereal *tolb, integer *k, integer
- *l, doublereal *u, integer *ldu, doublereal *v, integer *ldv,
- doublereal *q, integer *ldq, integer *iwork, doublereal *tau,
- doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
- u_offset, v_dim1, v_offset, i__1, i__2, i__3;
- doublereal d__1;
-
- /* Local variables */
- integer i__, j;
- extern logical lsame_(char *, char *);
- logical wantq, wantu, wantv;
- extern /* Subroutine */ void dgeqp3_(integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- integer *), dgeqr2_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dgerq2_(integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *), dorg2r_(integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *), dorm2r_(char *
- , char *, integer *, integer *, integer *, doublereal *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *), dormr2_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *), dlacpy_(char
- *, integer *, integer *, doublereal *, integer *, doublereal *,
- integer *), dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern void dlapmt_(logical *, integer *,
- integer *, doublereal *, integer *, integer *);
- logical forwrd;
- integer lwkopt;
- logical lquery;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* August 2015 */
-
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- --iwork;
- --tau;
- --work;
-
- /* Function Body */
- wantu = lsame_(jobu, "U");
- wantv = lsame_(jobv, "V");
- wantq = lsame_(jobq, "Q");
- forwrd = TRUE_;
- lquery = *lwork == -1;
- lwkopt = 1;
-
- /* Test the input arguments */
-
- *info = 0;
- if (! (wantu || lsame_(jobu, "N"))) {
- *info = -1;
- } else if (! (wantv || lsame_(jobv, "N"))) {
- *info = -2;
- } else if (! (wantq || lsame_(jobq, "N"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*p < 0) {
- *info = -5;
- } else if (*n < 0) {
- *info = -6;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -8;
- } else if (*ldb < f2cmax(1,*p)) {
- *info = -10;
- } else if (*ldu < 1 || wantu && *ldu < *m) {
- *info = -16;
- } else if (*ldv < 1 || wantv && *ldv < *p) {
- *info = -18;
- } else if (*ldq < 1 || wantq && *ldq < *n) {
- *info = -20;
- } else if (*lwork < 1 && ! lquery) {
- *info = -24;
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
- dgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &c_n1,
- info);
- lwkopt = (integer) work[1];
- if (wantv) {
- lwkopt = f2cmax(lwkopt,*p);
- }
- /* Computing MAX */
- i__1 = lwkopt, i__2 = f2cmin(*n,*p);
- lwkopt = f2cmax(i__1,i__2);
- lwkopt = f2cmax(lwkopt,*m);
- if (wantq) {
- lwkopt = f2cmax(lwkopt,*n);
- }
- dgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &c_n1,
- info);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- lwkopt = f2cmax(1,lwkopt);
- work[1] = (doublereal) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DGGSVP3", &i__1, (ftnlen)7);
- return;
- }
- if (lquery) {
- return;
- }
-
- /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
- /* ( 0 0 ) */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = 0;
- /* L10: */
- }
- dgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], lwork,
- info);
-
- /* Update A := A*P */
-
- dlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
-
- /* Determine the effective rank of matrix B. */
-
- *l = 0;
- i__1 = f2cmin(*p,*n);
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) > *tolb) {
- ++(*l);
- }
- /* L20: */
- }
-
- if (wantv) {
-
- /* Copy the details of V, and form V. */
-
- dlaset_("Full", p, p, &c_b14, &c_b14, &v[v_offset], ldv);
- if (*p > 1) {
- i__1 = *p - 1;
- dlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
- ldv);
- }
- i__1 = f2cmin(*p,*n);
- dorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
- }
-
- /* Clean up B */
-
- i__1 = *l - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
- /* L30: */
- }
- /* L40: */
- }
- if (*p > *l) {
- i__1 = *p - *l;
- dlaset_("Full", &i__1, n, &c_b14, &c_b14, &b[*l + 1 + b_dim1], ldb);
- }
-
- if (wantq) {
-
- /* Set Q = I and Update Q := Q*P */
-
- dlaset_("Full", n, n, &c_b14, &c_b24, &q[q_offset], ldq);
- dlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
- }
-
- if (*p >= *l && *n != *l) {
-
- /* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
-
- dgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
-
- /* Update A := A*Z**T */
-
- dormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
- a_offset], lda, &work[1], info);
-
- if (wantq) {
-
- /* Update Q := Q*Z**T */
-
- dormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
- &q[q_offset], ldq, &work[1], info);
- }
-
- /* Clean up B */
-
- i__1 = *n - *l;
- dlaset_("Full", l, &i__1, &c_b14, &c_b14, &b[b_offset], ldb);
- i__1 = *n;
- for (j = *n - *l + 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
- /* L50: */
- }
- /* L60: */
- }
-
- }
-
- /* Let N-L L */
- /* A = ( A11 A12 ) M, */
-
- /* then the following does the complete QR decomposition of A11: */
-
- /* A11 = U*( 0 T12 )*P1**T */
- /* ( 0 0 ) */
-
- i__1 = *n - *l;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = 0;
- /* L70: */
- }
- i__1 = *n - *l;
- dgeqp3_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], lwork,
- info);
-
- /* Determine the effective rank of A11 */
-
- *k = 0;
- /* Computing MIN */
- i__2 = *m, i__3 = *n - *l;
- i__1 = f2cmin(i__2,i__3);
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) > *tola) {
- ++(*k);
- }
- /* L80: */
- }
-
- /* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) */
-
- /* Computing MIN */
- i__2 = *m, i__3 = *n - *l;
- i__1 = f2cmin(i__2,i__3);
- dorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
- *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
-
- if (wantu) {
-
- /* Copy the details of U, and form U */
-
- dlaset_("Full", m, m, &c_b14, &c_b14, &u[u_offset], ldu);
- if (*m > 1) {
- i__1 = *m - 1;
- i__2 = *n - *l;
- dlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
- , ldu);
- }
- /* Computing MIN */
- i__2 = *m, i__3 = *n - *l;
- i__1 = f2cmin(i__2,i__3);
- dorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
- }
-
- if (wantq) {
-
- /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
-
- i__1 = *n - *l;
- dlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
- }
-
- /* Clean up A: set the strictly lower triangular part of */
- /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
-
- i__1 = *k - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
- /* L90: */
- }
- /* L100: */
- }
- if (*m > *k) {
- i__1 = *m - *k;
- i__2 = *n - *l;
- dlaset_("Full", &i__1, &i__2, &c_b14, &c_b14, &a[*k + 1 + a_dim1],
- lda);
- }
-
- if (*n - *l > *k) {
-
- /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
-
- i__1 = *n - *l;
- dgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
-
- if (wantq) {
-
- /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T */
-
- i__1 = *n - *l;
- dormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
- tau[1], &q[q_offset], ldq, &work[1], info);
- }
-
- /* Clean up A */
-
- i__1 = *n - *l - *k;
- dlaset_("Full", k, &i__1, &c_b14, &c_b14, &a[a_offset], lda);
- i__1 = *n - *l;
- for (j = *n - *l - *k + 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
- /* L110: */
- }
- /* L120: */
- }
-
- }
-
- if (*m > *k) {
-
- /* QR factorization of A( K+1:M,N-L+1:N ) */
-
- i__1 = *m - *k;
- dgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
- work[1], info);
-
- if (wantu) {
-
- /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
-
- i__1 = *m - *k;
- /* Computing MIN */
- i__3 = *m - *k;
- i__2 = f2cmin(i__3,*l);
- dorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
- - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
- 1], ldu, &work[1], info);
- }
-
- /* Clean up */
-
- i__1 = *n;
- for (j = *n - *l + 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = 0.;
- /* L130: */
- }
- /* L140: */
- }
-
- }
-
- work[1] = (doublereal) lwkopt;
- return;
-
- /* End of DGGSVP3 */
-
- } /* dggsvp3_ */
|