|
- *> \brief \b DGETRF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGETRF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetrf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetrf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetrf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGETRF computes an LU factorization of a general M-by-N matrix A
- *> using partial pivoting with row interchanges.
- *>
- *> The factorization has the form
- *> A = P * L * U
- *> where P is a permutation matrix, L is lower triangular with unit
- *> diagonal elements (lower trapezoidal if m > n), and U is upper
- *> triangular (upper trapezoidal if m < n).
- *>
- *> This is the right-looking Level 3 BLAS version of the algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the M-by-N matrix to be factored.
- *> On exit, the factors L and U from the factorization
- *> A = P*L*U; the unit diagonal elements of L are not stored.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (min(M,N))
- *> The pivot indices; for 1 <= i <= min(M,N), row i of the
- *> matrix was interchanged with row IPIV(i).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
- *> has been completed, but the factor U is exactly
- *> singular, and division by zero will occur if it is used
- *> to solve a system of equations.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEcomputational
- *
- * =====================================================================
- SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IINFO, J, JB, NB
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DGETRF2, DLASWP, DTRSM, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGETRF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 )
- $ RETURN
- *
- * Determine the block size for this environment.
- *
- NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )
- IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
- *
- * Use unblocked code.
- *
- CALL DGETRF2( M, N, A, LDA, IPIV, INFO )
- ELSE
- *
- * Use blocked code.
- *
- DO 20 J = 1, MIN( M, N ), NB
- JB = MIN( MIN( M, N )-J+1, NB )
- *
- * Factor diagonal and subdiagonal blocks and test for exact
- * singularity.
- *
- CALL DGETRF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
- *
- * Adjust INFO and the pivot indices.
- *
- IF( INFO.EQ.0 .AND. IINFO.GT.0 )
- $ INFO = IINFO + J - 1
- DO 10 I = J, MIN( M, J+JB-1 )
- IPIV( I ) = J - 1 + IPIV( I )
- 10 CONTINUE
- *
- * Apply interchanges to columns 1:J-1.
- *
- CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
- *
- IF( J+JB.LE.N ) THEN
- *
- * Apply interchanges to columns J+JB:N.
- *
- CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,
- $ IPIV, 1 )
- *
- * Compute block row of U.
- *
- CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
- $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
- $ LDA )
- IF( J+JB.LE.M ) THEN
- *
- * Update trailing submatrix.
- *
- CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
- $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
- $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
- $ LDA )
- END IF
- END IF
- 20 CONTINUE
- END IF
- RETURN
- *
- * End of DGETRF
- *
- END
|