|
- *> \brief \b DGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGERQ2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgerq2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgerq2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgerq2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGERQ2 computes an RQ factorization of a real m by n matrix A:
- *> A = R * Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the m by n matrix A.
- *> On exit, if m <= n, the upper triangle of the subarray
- *> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
- *> if m >= n, the elements on and above the (m-n)-th subdiagonal
- *> contain the m by n upper trapezoidal matrix R; the remaining
- *> elements, with the array TAU, represent the orthogonal matrix
- *> Q as a product of elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (min(M,N))
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (M)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of elementary reflectors
- *>
- *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**T
- *>
- *> where tau is a real scalar, and v is a real vector with
- *> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
- *> A(m-k+i,1:n-k+i-1), and tau in TAU(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, K
- DOUBLE PRECISION AII
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARF, DLARFG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -4
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGERQ2', -INFO )
- RETURN
- END IF
- *
- K = MIN( M, N )
- *
- DO 10 I = K, 1, -1
- *
- * Generate elementary reflector H(i) to annihilate
- * A(m-k+i,1:n-k+i-1)
- *
- CALL DLARFG( N-K+I, A( M-K+I, N-K+I ), A( M-K+I, 1 ), LDA,
- $ TAU( I ) )
- *
- * Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
- *
- AII = A( M-K+I, N-K+I )
- A( M-K+I, N-K+I ) = ONE
- CALL DLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
- $ TAU( I ), A, LDA, WORK )
- A( M-K+I, N-K+I ) = AII
- 10 CONTINUE
- RETURN
- *
- * End of DGERQ2
- *
- END
|