|
- *> \brief \b DGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGEQRT3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * RECURSIVE SUBROUTINE DGEQRT3( M, N, A, LDA, T, LDT, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, M, N, LDT
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), T( LDT, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGEQRT3 recursively computes a QR factorization of a real M-by-N
- *> matrix A, using the compact WY representation of Q.
- *>
- *> Based on the algorithm of Elmroth and Gustavson,
- *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= N.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the real M-by-N matrix A. On exit, the elements on and
- *> above the diagonal contain the N-by-N upper triangular matrix R; the
- *> elements below the diagonal are the columns of V. See below for
- *> further details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDT,N)
- *> The N-by-N upper triangular factor of the block reflector.
- *> The elements on and above the diagonal contain the block
- *> reflector T; the elements below the diagonal are not used.
- *> See below for further details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix V stores the elementary reflectors H(i) in the i-th column
- *> below the diagonal. For example, if M=5 and N=3, the matrix V is
- *>
- *> V = ( 1 )
- *> ( v1 1 )
- *> ( v1 v2 1 )
- *> ( v1 v2 v3 )
- *> ( v1 v2 v3 )
- *>
- *> where the vi's represent the vectors which define H(i), which are returned
- *> in the matrix A. The 1's along the diagonal of V are not stored in A. The
- *> block reflector H is then given by
- *>
- *> H = I - V * T * V**T
- *>
- *> where V**T is the transpose of V.
- *>
- *> For details of the algorithm, see Elmroth and Gustavson (cited above).
- *> \endverbatim
- *>
- * =====================================================================
- RECURSIVE SUBROUTINE DGEQRT3( M, N, A, LDA, T, LDT, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, M, N, LDT
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), T( LDT, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+00 )
- * ..
- * .. Local Scalars ..
- INTEGER I, I1, J, J1, N1, N2, IINFO
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARFG, DTRMM, DGEMM, XERBLA
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- IF( N .LT. 0 ) THEN
- INFO = -2
- ELSE IF( M .LT. N ) THEN
- INFO = -1
- ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
- INFO = -4
- ELSE IF( LDT .LT. MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEQRT3', -INFO )
- RETURN
- END IF
- *
- IF( N.EQ.1 ) THEN
- *
- * Compute Householder transform when N=1
- *
- CALL DLARFG( M, A(1,1), A( MIN( 2, M ), 1 ), 1, T(1,1) )
- *
- ELSE
- *
- * Otherwise, split A into blocks...
- *
- N1 = N/2
- N2 = N-N1
- J1 = MIN( N1+1, N )
- I1 = MIN( N+1, M )
- *
- * Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
- *
- CALL DGEQRT3( M, N1, A, LDA, T, LDT, IINFO )
- *
- * Compute A(1:M,J1:N) = Q1^H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
- *
- DO J=1,N2
- DO I=1,N1
- T( I, J+N1 ) = A( I, J+N1 )
- END DO
- END DO
- CALL DTRMM( 'L', 'L', 'T', 'U', N1, N2, ONE,
- & A, LDA, T( 1, J1 ), LDT )
- *
- CALL DGEMM( 'T', 'N', N1, N2, M-N1, ONE, A( J1, 1 ), LDA,
- & A( J1, J1 ), LDA, ONE, T( 1, J1 ), LDT)
- *
- CALL DTRMM( 'L', 'U', 'T', 'N', N1, N2, ONE,
- & T, LDT, T( 1, J1 ), LDT )
- *
- CALL DGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( J1, 1 ), LDA,
- & T( 1, J1 ), LDT, ONE, A( J1, J1 ), LDA )
- *
- CALL DTRMM( 'L', 'L', 'N', 'U', N1, N2, ONE,
- & A, LDA, T( 1, J1 ), LDT )
- *
- DO J=1,N2
- DO I=1,N1
- A( I, J+N1 ) = A( I, J+N1 ) - T( I, J+N1 )
- END DO
- END DO
- *
- * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
- *
- CALL DGEQRT3( M-N1, N2, A( J1, J1 ), LDA,
- & T( J1, J1 ), LDT, IINFO )
- *
- * Compute T3 = T(1:N1,J1:N) = -T1 Y1^H Y2 T2
- *
- DO I=1,N1
- DO J=1,N2
- T( I, J+N1 ) = (A( J+N1, I ))
- END DO
- END DO
- *
- CALL DTRMM( 'R', 'L', 'N', 'U', N1, N2, ONE,
- & A( J1, J1 ), LDA, T( 1, J1 ), LDT )
- *
- CALL DGEMM( 'T', 'N', N1, N2, M-N, ONE, A( I1, 1 ), LDA,
- & A( I1, J1 ), LDA, ONE, T( 1, J1 ), LDT )
- *
- CALL DTRMM( 'L', 'U', 'N', 'N', N1, N2, -ONE, T, LDT,
- & T( 1, J1 ), LDT )
- *
- CALL DTRMM( 'R', 'U', 'N', 'N', N1, N2, ONE,
- & T( J1, J1 ), LDT, T( 1, J1 ), LDT )
- *
- * Y = (Y1,Y2); R = [ R1 A(1:N1,J1:N) ]; T = [T1 T3]
- * [ 0 R2 ] [ 0 T2]
- *
- END IF
- *
- RETURN
- *
- * End of DGEQRT3
- *
- END
|