|
- *> \brief \b DGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DGEHD2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgehd2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgehd2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgehd2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, ILO, INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DGEHD2 reduces a real general matrix A to upper Hessenberg form H by
- *> an orthogonal similarity transformation: Q**T * A * Q = H .
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *>
- *> It is assumed that A is already upper triangular in rows
- *> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- *> set by a previous call to DGEBAL; otherwise they should be
- *> set to 1 and N respectively. See Further Details.
- *> 1 <= ILO <= IHI <= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the n by n general matrix to be reduced.
- *> On exit, the upper triangle and the first subdiagonal of A
- *> are overwritten with the upper Hessenberg matrix H, and the
- *> elements below the first subdiagonal, with the array TAU,
- *> represent the orthogonal matrix Q as a product of elementary
- *> reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleGEcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of (ihi-ilo) elementary
- *> reflectors
- *>
- *> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**T
- *>
- *> where tau is a real scalar, and v is a real vector with
- *> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- *> exit in A(i+2:ihi,i), and tau in TAU(i).
- *>
- *> The contents of A are illustrated by the following example, with
- *> n = 7, ilo = 2 and ihi = 6:
- *>
- *> on entry, on exit,
- *>
- *> ( a a a a a a a ) ( a a h h h h a )
- *> ( a a a a a a ) ( a h h h h a )
- *> ( a a a a a a ) ( h h h h h h )
- *> ( a a a a a a ) ( v2 h h h h h )
- *> ( a a a a a a ) ( v2 v3 h h h h )
- *> ( a a a a a a ) ( v2 v3 v4 h h h )
- *> ( a ) ( a )
- *>
- *> where a denotes an element of the original matrix A, h denotes a
- *> modified element of the upper Hessenberg matrix H, and vi denotes an
- *> element of the vector defining H(i).
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, ILO, INFO, LDA, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE
- PARAMETER ( ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I
- DOUBLE PRECISION AII
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARF, DLARFG, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
- INFO = -2
- ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DGEHD2', -INFO )
- RETURN
- END IF
- *
- DO 10 I = ILO, IHI - 1
- *
- * Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
- *
- CALL DLARFG( IHI-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
- $ TAU( I ) )
- AII = A( I+1, I )
- A( I+1, I ) = ONE
- *
- * Apply H(i) to A(1:ihi,i+1:ihi) from the right
- *
- CALL DLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
- $ A( 1, I+1 ), LDA, WORK )
- *
- * Apply H(i) to A(i+1:ihi,i+1:n) from the left
- *
- CALL DLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1, TAU( I ),
- $ A( I+1, I+1 ), LDA, WORK )
- *
- A( I+1, I ) = AII
- 10 CONTINUE
- *
- RETURN
- *
- * End of DGEHD2
- *
- END
|